• 제목/요약/키워드: 2-dimensional scanner

Search Result 183, Processing Time 0.023 seconds

Effect of drill radius setting on prosthesis machining (드릴 반경 설정이 보철물 가공에 미치는 영향)

  • Kim, Chong-Myeong;Kim, So-Ri;Cho, Mi-hyang
    • Journal of Technologic Dentistry
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the trueness and fitness of machined prostheses according to drill radius setting in CAD software. Methods: For this study, standard abutment were replicated in Type IV stone. The stone abutment were scanned using a dental scanner. The CAD design software was designed using scanned abutment data. When designing, the drill radius was set to 0.3 mm and 0 mm, respectively, and saved. The saved design data was milled using a milling machine (n=13). The inner surface of the milled crown was scanned. The trueness and fitness were measured using the inner scan data of prostheses. Independent t-tests were performed to identify significant differences in each data. Results: Trueness values of the data saved with 0.3 mm and 0 mm drill radius were $18.9{\pm}2.3{\mu}m$ and $19.1{\pm}0.9{\mu}m$, respectively. There was no statistically significant difference between the groups. Fitness values of the data saved with 0.3 mm and 0 mm drill radius were $65.5{\pm}0.8{\mu}m$ and $33.8{\pm}1.0{\mu}m$, respectively. There was a statistically significant difference between the groups (p<.05). Conclusion : Setting the drill radius is important to produce clinically good fit prostheses.

Producing the insoles for flat feet of senior men using 3D systems based on 3D scanning, 3D modeling, and 3D printing (3D 스캐닝, 3D 모델링, 3D 프린팅 기반의 3D 시스템에 의한 시니어 평발용 인솔 제작)

  • Oh, Seol Young;Suh, Dongae
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.3
    • /
    • pp.270-284
    • /
    • 2017
  • This study aimed to create 3D-printed insoles for flat-footed senior men using 3D systems. 3D systems are product-manufacturing systems that use 3-dimensional technologies like 3D scanning, 3D modeling, and 3D printing. This study used a 3D scanner (NexScan2), 3D CAD programs including Rapidform, AutoCAD, SolidWorks, Nauta+ compiling program, and a 3D printer. In order to create insoles for flat-footed senior men, we analyzed horizontal sections of 3D foot scans We selected 20 flat-footed and 20 normal-footed subjects. To make the 3D insole models, we sliced nine lines on the surface of the subjects' 3D foot scans, and plotted 144 points on the lines. We calculated the average of these 3D coordinates, then located this average within the 3D space of the AutoCAD program and created 3D sole models using the loft surface tools of the SolidWorks program. The sole models for flat feet differed from those of normal feet in the depth of the arch at the inner sideline and the big toe line. We placed the normal-footed sole model on a flat-footed sole model, and the combination of the two models resulted in the 3D insole for flat feet. We printed the 3D modeled insole using a 3D printer. The 3D printing material was an acrylic resin similar to rubber. This made the insole model flexible and wearable. This study utilized 3D systems to create 3D insoles for flat-footed seniors and this process can be applied to manufacture other items in the fashion industry as well.

Surface Reconstruction from unorganized 3D Points by an improved Shrink-wrapping Algorithm (개선된 Shrink-wrapping 알고리즘을 이용한 비조직 3차원 데이터로부터의 표면 재구성)

  • Park, Eun-Jin;Koo, Bon-Ki;Choi, Young-Kyu
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.133-140
    • /
    • 2007
  • The SWBF(shrink-wrapped boundary face) algorithm is a recent mesh reconstruction method for constructing a surface model from a set of unorganized 3D points. In this paper, we point out the surface duplication problem of SWBF and propose an improved mesh reconstruction scheme. Our method tries to classify the non-boundary cells as the inner cell or the outer cell, and makes an initial mesh without surface duplication by adopting the improved boundary face definition. To handle the directional unbalance of surface sampling density arise in typical 3D scanners, two dimensional connectivity in the cell image is introduced and utilized. According to experiments, our method is proved to be very useful to overcome the surface duplication problem of the SWBF algorithm.

Assessment of Yield Characteristics of Gas Pipeline Materials by Observing Surface-Local Deformation (미소 표면변형 관찰을 통한 가스배관 부재의 항복특성 평가)

  • Lee, Yun-Hee;Baek, Un-Bong;Cheong, In-Hyeon;Nahm, Seung-Hoon;Lee, Sang-Houck
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.92-98
    • /
    • 2008
  • A combination of the instrumented indentation and 3D morphology measurement has been tried in order to perform a real-time property measurement of degraded materials in gas pipelines; three-dimensional indent morphologies were recorded using a reflective laser scanner after a series of insturmented indentations on three metallic specimens. Dimensions of the permanent deformation zone and contact boundary were analyzed from the cross-sectional profile over an remnant indent and used for estimating yield strength and hardness, respectively. Estimated yield strength was comparable with that from uniaxial tensile test and actual hardness implying material pile-up effects was lower than the calculated value from indentation curve by $20{\sim}30%$. It means that this 3D image analysis can explain the material pile-up effects on the contact properties. Additionally, a combined system of indentation and laser sensor was newly designed by modifying a shape of the indentation loading fixture.

  • PDF

A comparative study of the improvement after different self-assessment methods of tooth preparation (치아 삭제의 다른 자가 평가 방법 후 개선에 대한 비교 연구)

  • Kim, JungHan;Son, Keunbada;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.4
    • /
    • pp.220-227
    • /
    • 2019
  • Purpose: The purpose of this study was to compare the degree of tooth preparation abilities of students according to three self-assessment methods. Materials and Methods: forty-eight sophomores in Kyungpook National University College of Dentistry were divided into three experimental groups. Students performed tooth preparation of the left mandibular first molar for full gold crown. They performed self-assessment using the three methods (visual, digital, and putty index self-assessment group), and reperformed tooth preparation. An intraoral scanner was used to scan each tooth model (prepared tooth and unprepared tooth), and data were acquired in standard tessellation language (STL) file format. The STL files of prepared tooth and unprepared tooth were superimposed using the 3-dimensional analysis software (Geomagic control X). And the reduction amount was measured. In the statistical analysis, all values of reduction amount were analyzed with the Wilcoxon signed rank test and Kruskal-Wallis test (α = 0.05). Results: The three self-assessment methods showed statistically significant differences (P < 0.001). The putty index self-assessment group showed the highest reduction in error than the digital self-assessment method. Conclusion: Within limitations of this study, students showed significant differences in improvement of tooth preparation ability according to the three self-evaluation methods.

Influence of the angles and number of scans on the accuracy of 3D laser scanning (3 차원 레이저 스캔영상 채득 시 스캔각도와 횟수에 따른 정확도)

  • Lee, Kyung-Min;Song, Hyo-Young;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.41 no.2
    • /
    • pp.76-86
    • /
    • 2011
  • Objective: To investigate whether the accuracy of 3D laser scanning is influenced by the angles and number of scans. Methods: Using a 3D laser scanner, 10 manikins with facial markers were scanned at 7 horizontal angles (front view and at $20^{\circ}$, $45^{\circ}$, and $60^{\circ}$ angles on the right and left sides). Three-dimensional facial images were reconstructed by 6 methods differing in the number and angles of scans, and measurements of these images were compared to the physical measurements from the manikins. Results: The laser scan images were magnified by 0.14 - 0.26%. For images reconstructed by merging 2 scans, excluding the front view; and by merging 3 scans, including the front view and scans obtained at $20^{\circ}$ on both sides; several measurements were significantly different than the physical measurements. However, for images reconstructed by merging 3 scans, including the front view; and 5 scans, including the front view and scans obtained at $20^{\circ}$ and $60^{\circ}$ on both sides; only 1 measurement was significantly different. Conclusions: These results suggest that the number and angle of scans influence the accuracy of 3D laser scanning. A minimum of 3 scans, including the front view and scans obtained at more than $45^{\circ}$ on both sides, should be integrated to obtain accurate 3D facial images.

Comparison of finite element analysis of the closing patterns between first and second premolar extraction spaces (상악 제1 및 제2소구치의 발치공간 폐쇄기전에 대한 3차원 유한요소 해석의 비교 연구)

  • Koh, Shin-Ae;Im, Won-Hee;Park, Sun-Hyung;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.407-420
    • /
    • 2007
  • The aim of this study was to compare the differences in closing extraction spaces between maxillary first premolar and second premolar extractions using 3-dimensional finite element analysis (FEA). Methods: Maxillary artificial teeth were selected according to Wheeler's dental anatomy. The size and shape of each tooth, bracket and archwire were made from captured real images by a 3D laser scanner and FEA was performed with a 10-noded tetrahedron. A $10^{\circ}$ gable bend was placed behind the bull loop on a $0.017"{\times}0.025"$ archwire. The extraction space was then closed through 12 repeated activating processes for each 2mm of space. Results and Conclusions: The study demonstrated that the retraction of anterior teeth was less for the second premolar extraction than for the first premolar extraction. The anterior teeth showed a controlled tipping movement with slight extrusion, and the posterior teeth showed a mesial-in rotational movement. For the second premolar extraction, buccal movement of posterior teeth was highly increased.

Depiction of Acute Stroke Using 3-Tesla Clinical Amide Proton Transfer Imaging: Saturation Time Optimization Using an in vivo Rat Stroke Model, and a Preliminary Study in Human

  • Park, Ji Eun;Kim, Ho Sung;Jung, Seung Chai;Keupp, Jochen;Jeong, Ha-Kyu;Kim, Sang Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • Purpose: To optimize the saturation time and maximizing the pH-weighted difference between the normal and ischemic brain regions, on 3-tesla amide proton transfer (APT) imaging using an in vivo rat model. Materials and Methods: Three male Wistar rats underwent middle cerebral artery occlusion, and were examined in a 3-tesla magnetic resonance imaging (MRI) scanner. APT imaging acquisition was performed with 3-dimensional turbo spin-echo imaging, using a 32-channel head coil and 2-channel parallel radiofrequency transmission. An off-resonance radiofrequency pulse was applied with a Sinc-Gauss pulse at a $B_{1,rms}$ amplitude of $1.2{\mu}T$ using a 2-channel parallel transmission. Saturation times of 3, 4, or 5 s were tested. The APT effect was quantified using the magnetization-transfer-ratio asymmetry at 3.5 ppm with respect to the water resonance (APT-weighted signal), and compared with the normal and ischemic regions. The result was then applied to an acute stroke patient to evaluate feasibility. Results: Visual detection of ischemic regions was achieved with the 3-, 4-, and 5-s protocols. Among the different saturation times at $1.2{\mu}T$ power, 4 s showed the maximum difference between the ischemic and normal regions (-0.95%, P = 0.029). The APTw signal difference for 3 and 5 s was -0.9% and -0.7%, respectively. The 4-s saturation time protocol also successfully depicted the pH-weighted differences in an acute stroke patient. Conclusion: For 3-tesla turbo spin-echo APT imaging, the maximal pH-weighted difference achieved when using the $1.2{\mu}T$ power, was with the 4 s saturation time. This protocol will be helpful to depict pH-weighted difference in stroke patients in clinical settings.

Effect of milling tool wear on the internal fit of PMMA implant interim prosthesis (밀링 공구의 마모가 PMMA 임플란트 임시보철물 변연 및 내면적합도에 미치는 영향)

  • Shin, Mi-sun
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the effect of CAD/CAM system milling tool wear on the marginal and internal fit of PMMA implant interim prosthesis three-dimensional manner. Methods: A total of 20 crowns were fabricated with CAD/CAM method. Their designs were unified to first molar of the left maxilla. The Customized abutments were prepared and scanned with on optical model scanner. Five crowns were milled by the newly replaced tool (1st milling), and 15 crowns were milled by 2nd, 3rd, 4th milling tool. The marginal and internal fit of 20 interim crowns were measured using the triple-scan protocol. Results: Statistically significant difference was found between the $1^{st}$ milling group ($51.8{\pm}14.6{\mu}m$) and the $3^{rd}$, $4^{th}$ milling group ($128.6{\pm}43.8{\mu}m$, $146.2{\pm}38.1{\mu}m$, respectively) at the distal margins. In the mesial margins, There was a statistically significant difference between the $1^{st}$ milling group ($63.6{\pm}25.9{\mu}m$) and the $3^{rd}$, $4^{th}$ milling group ($137.2{\pm}25.9{\mu}m$, $186.8{\pm}70.6{\mu}m$, respectively). In the distal line angle, significant difference was found between the $1^{st}$, $2^{nd}$, $3^{rd}$ milling groups and the $4^{th}$ milling group. In the mesial axial wall, significant difference was found between the $1^{st}$ milling group ($52.2{\pm}20.3{\mu}m$) and the $3^{rd}$, $4^{th}$ milling groups ($22.8{\pm}8.8{\mu}m$, $7.8{\pm}5.7{\mu}m$). Conclusion: As a result of the experiment, decrease of the marginal and internal fit was statistically significant as the number of machining cycles increased. In order to produce clinically excellent restorations, it is recommandable to consider the condition of the milling tool wear, when designing the restoration with CAD program.

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF