• Title/Summary/Keyword: 2-chlorophenol

Search Result 110, Processing Time 0.031 seconds

Determination of chlorophenols from the industrial wastewater by GC/MS (GC/MS를 이용한 산업폐수중의 염화페놀류 분석)

  • Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.320-328
    • /
    • 2005
  • The most common five chlorophenols (4-chloro-3-methylphenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol) were determined from the industrial wastewater by GC/MS. The samples were collected from the petrochemical company, textile company and leather making company. The developed analytical method was modified by USEPA Method 3510. The samples were extracted with dichloromethane under pH 2 and pH 5-6, and determined by the GC/MS with SIM mode. There were good linearities (above $R^2=0.9943$) on e ranges of the 0.1 ng/mL~10 ng/mL and 0.5 ng/mL~10 ng/mL, and the limit of detection were between 0.1 ng/mL and 0.5 ng/mL. The absolute recoveries were measured at the concentration of 1, 5, and 10 ng/mL, and the recovery was 71.6~98.9% except for PCP. The relative standard deviation (RSD) was 1.2~14.3% and it gave a good reproducibility for the assay. The bias, which shows the accuracy, was a good although it was a little high values (11.3~22.1%) at the low concentration (1 ng/mL).

Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture (복합미생물제재를 이용한 염소화 페놀계 폐수의 생물학적 처리)

  • 오희목;이완석;정상욱;박찬선;윤병대;김장억
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture. Lee, Wan-Seok1, Sang-Wook Jung, Chan-Sun Park, Byung-Dae Yoon, Jang-Eok Kim\ and Hee-Mock Oh*. Environmental Bioresources Laboratory, Korea Research Institute of Biosicence and Biotechnology, Taejon, Korea, 1 Department of Agricultural Chemistry, Kyungpool< National University, Taegu, Korea - The biodegradation of chlorinated phenols in an artificial wastewater was investigated using a mixed culture. The mixed culture was composed of 8 microorganisms isolated from the soil contaminated with various chlorinated phenols. Pseudomonas sp. BM as a main constituent of a mixed culture was Gram-negative, catalase- and oxidase-positive, and rod-shaped, and did not grow at 41°C. It degraded 99% of initial 500 mg!1 of pentachlorophenol (PCP) in the minimal salts medium as a sole source of carbon and energy within 3 days. The degradation efficiency of Pseu.domon.as sp. BM was not affected by the other organic carbon and nitrogen compounds. Pseudomonas sp. BM was able to grow in a broad range of pH 5 - 8, and degrade 2,000 mg/1 PCP. In the experiment with an artificial wastewater containing chlorinated phenols, the degradation efficiency of the mixed culture was the range of 73% (2,4-dichlorophenol) -96% (2-chlorophenol) during an incubation of 7 days. In a continuous culture experiment, the degradation efficiency of mixed culture plus activated sludge was about 2 times higher than that of the control containing only activated sludge. These results indicate that it is possible to apply the mixed culture to other wastewaters containing chlorinated phenols. Key words: Biodegradation, chlorinated phenols, pentachlorophenol, Pseudomonas sp. BM

  • PDF

Synthesis and Properties of Hyperbranched Liquid Crystalline Polyesters by Direct Polycondensation (직접중축합법에 의한 하이퍼브랜치 액정 폴리에스터의 합성 및 성질)

  • Park, Jong-Ryul;Kim, Hye-Mi;Yoon, Doo-Soo;Sohn, Jeong Sun;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.237-244
    • /
    • 2017
  • Hyperbranched liquid crystalline polymers with azomesogenic and cholesteryl groups in their terminal positions were designed and synthesized by direct polycondensation reaction. The chemical structures and thermal and mesomorphic properties of the synthesized polymers were investigated by FT-IR, $^1H-NMR$, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and polarizing optical microscopy (POM). The inherent viscosities (${\eta}_{inh}$) of the polymers were measured to be between 0.30 and 0.50 dL/g in phenol/p-chlorophenol/1,1,2,2-tetrachloroethane (25/40/35 = w/w/w). The degree of branching (DB) in these polymers ranged from 0.37 to 0.75; they, as amorphous polymer, showed glass transition temperatures ranging from 80 to $120^{\circ}C$; the polymers readily dissolved in most of the organic solvents used in the experiments. Only hyperbranched polymers with a cholesteryl group as their mesogenic group showed liquid crystalline phases.

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

Efficiency of methane production from pig manure slurry using anaerobic digestor combined with compost filtration bed (퇴비단 여과상이 부착된 혐기소화조를 이용한 돈분뇨 슬러리 메탄생산 효율분석)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Choi, Dong-Yoon;Lee, Dong-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • The characteristics of methane production from pig manure slurry was investigated using anaerobic digestor combined with compost filtration bed. In this study, raw pig manure slurry was digested in mesophilic rectangular digester (effective volume $250m^3$) for 25 days and anaerobic digestion wastewater was filtered through compost filtration bed, which is composed of double layer, sawdust and chaff. The characteristics of anaerobic digestion wastewater were BOD 1,800 mg/L, COD 3,500 mg/L, SS 11,800 mg/L, T-N 1,200 mg/L and T-P 350 mg/L. After the filtration process, the contents of BOD, COD, SS, T-N and T-P of the anaerobic digestion wastewater were reduced by 97%, 62%, 89%, 39% and 57%, respectively. The concentrations of N, $P_2O_5$, and $K_2O$ of the leachate were 1,024, 111 and 407 mg/L, respectively. However, there was no odor emitted from the leachate.

A Study on the Biodegradability of Some Pesticides in Water (물 중에서 일부 농약의 생분해성에 환한 연구)

  • 민경진;차춘근
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.2
    • /
    • pp.125-132
    • /
    • 2001
  • The present study was conducted to investigate biological degradability of phosphamidon and profenfos. In the biodegradation test of two pesticides by the modified river die-away method from May 20 to July 29, 1999, the biodegradation rate was determined in Nakdong (A) and Kumho(B) River. The residual percentages of phosphamidon were 74.9%, 68.8% and 62.7% in control, A and B samples 7 days after applicaton, respectively. Biodegradation constants and half-lives of phosphamidon were 25.1%, 21.9% and 11.9% in control, A and B samples 7 days after application. Biodegradation constants and half-lives of profenofos were 0.0005 and 58.4 days in A, 0.0013 and 21.6 days in B, respectively. The biodegradation rates of phosphamidon and profenofos were higher in the Kumho River (B) than in the Nackdong River(A). The strains of microorganisms for the degradation of phosphamidon and profenofos were identified as Klebsiella pneumoniae, Aeromonas hydrophila and Acinetobacter calcoaceticus, all Gram-negative bacteria. In order to identify biodegradate products, the extracts of cultivates were analyzed by GC/MS. The mass spectra of biodegradate roducts of phosphamidon were at m/z 153 and 149, those of the profenofos were at m/z 208 and 240, respectively. It was suggested that the biodegradate metabolites of phosphamidon were O, O-dimethyl phosphate(DMP) and N, N-diethylchloroacetamide, those of profenofos were 4-bromo-2-chlorophenol and O-ethyl-S-propyl phosphate.

  • PDF

A Recombinant Microbial Biosensor for Cadmium and Lead Detection (카드뮴 및 납 검출을 위한 재조합 미생물 바이오센서)

  • Shin, Hae Ja
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.503-508
    • /
    • 2016
  • Biosensors have been used as first-step monitoring tools to detect on-site samples in a simple and cost-effective manner. Numerous recombinant microbial biosensors have been exploited for monitoring on-site toxic chemicals and biological signals. Herein, a recombinant microbial biosensor was constructed for monitoring cadmium. The cadmium responding cadC regulatory gene and it’s promoter from Staphylococcus aureus was amplified through PCR, fused with the lacZ gene, and transformed into Escherichia coli BL21 (DE3) cells. In the presence of cadmium, the biosensor cells express β-galactosidase showing red color development with chlorophenol red β-galactopyranoside (CPRG) as the enzymatic substrate. The biosensor cells showed the best β-galactosidase activity after 3 hr induction with cadmium at pH 5 and a detection range from 0.01 μM to 10 mM cadmium with a linearity from 0.01 to 0.1 μM cadmium (y = 0.98 x + 0.142, R2 = 0.98). Among the heavy metals, cadmium and lead showed good responses, tin and cobalt showed medium responses, and mercury and copper showed no responses. The biosensor cells showed good responses to several waste waters similar to buffer solution, all spiked with cadmium. The biosensor described herein could be applied for on-site cadmium monitoring in a simple and cost-effective manner without sample pretreatments.

Modification of Indophenol Reaction for Quantification of Reduction Activity of Nanoscale Zero Valent Iron (나노 영가철 환원 반응성의 정량 분석을 위한 수정된 인도페놀법 적용)

  • Hwang, Yuhoon;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.667-675
    • /
    • 2016
  • Nanoscale zero-valent iron (nZVI) has been effectively applied for environmental remediation due to its ability to reduce various toxic compounds. However, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of nZVIs. A modified indophenol method was suggested to determine reducing activity of nZVI. The method was originally developed to determine aqueous ammonia concentration, but it was further modified to quantify phenol and aniline. The assay focused on analysis of reduction products rather than its mother compounds, which gave more accurate quantification of reductive activity. The suggested color assay showed superior selectivity toward reduction products, phenol or aniline, in the presence of mother compounds, 4-chlorophenol or nitrobenzene. Reaction conditions, such as reagent concentration and reaction time, were optimized to maximize sensitivity. Additionally, pretreatment step using $Na_2CO_3$ was suggested to eliminate the interference of residual iron ions. Monometallic nZVI and bimetallic Ni/Fe were investigated with the reaction. The substrates showed graduated reactivity, and thus, reduction potency and kinetics of different materials and reaction mechanism was distinguished. The colorimetric assay based on modified indophenol reaction can be promises to be a useful and simple tool in various nZVI related research topics.

Oxidative Coupling Reaction of Chlorophenols by Natural Manganese Dioxides (천연망간산화물을 이용한 클로로페놀류의 산화중합반응)

  • Jeon Sun-Young;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.62-69
    • /
    • 2005
  • Removal of 4-chlorophenol (4CP) by natural manganese dioxide (NMD) catalyzed reaction was investigated in this study. Tests were also carried out to evaluate the effects of pH and natural organic matter (NOM) on the degradative oxidation of 4CP. Experimental results proved that NMD was effective for the removal of 4CP. Extensive kinetic analysis suggests that overall oxidation of 4CP by NMD is second-order reaction, the first-order with respect to 4CP, and the first-order with respect to NMD, respectively. Also, 4CP oxidation rates on the Mn-oxide surfaces were highly dependent upon experimental conditions such as pH, initial concentration of 4CP or NMD, and existence of humic acid. As pH increased above PZC of NMD, the reaction rate of 4CP was decreased, due to the low affinity of 4CP on NMD at high pH. At pH lower than PZC of NMD, reaction rate of 4CP was also decreased. It was considered that humic acid was involved in the oxidative coupling reaction of 4CP by NMD, resulting in the enhanced degradation rate of 4CP. This study proved that natural manganese oxide can be effectively applied for the removal of chlorophenols in aqueous phase.

Determination of Hydrolysis Rate Constants on Phosphamidon and Profenofos (Phosphamidon과 Profenofos의 가수분해속도 상수의 측정)

  • Min, Kyung-Jin;Ha, Young-Duck;Seo, Seol;Cha, Chun-Geun;Park, Jang-Woo;Lee, Seung-Gon
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • The present study was peformed to determine the hydrolysis rate constants and degradation products of phosphamidon and proffnofos by the OECD method. Hydrolysis rate constants of phosphamidon in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40$^{\circ}$C were 0.0020, 0.0022, 0.0049 and 0.0040, 0.0050, 0.0150, respectively. Hydrolysis rate of phosphamidon was accelerated by temprerature change under same pH conditions, and half-life of phosphamidon in pH 9 at 40。C was 3 times faster than that at 25。C. Hydrolysis rate of phosphamidon in alkaline solution(pH 9) was 2~4 times faster than that in acidic solution(pH 4) and neutral solution(pH 7) under same temperature. Hydrolysis rate constants of profenofos in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40。C were 0.0022, 0.0047, 0.0860 and 0.0035, 0.0086, 0.1245, respectively. Hydrolysis rate of profenofos was accelerated by temprerature change under same pH conditions. Hydrolysis rate of profenofos in alkaline solution(pH 9) was 15~40 times faster than in acidic solution(pH 4) and neutral solution(pH 7) under same temperature condition, and half-life of profenofos was very fast within 8 hours. The hydrolysis rate of profenofos was faster than that of phosphamidon. In order to identify hydrolysis products, the extracts of degradation products were analyzed by GC/MS. The mass spectra of hydrolysis products of phosphamidon were at m/z 153 and 149, those of the profenofos were at m/z 208 and 240, respectively. The hydrolysis products of phosphamidon were O, O-dimethyl phosphate(DMP) and N, N-diethylchloroacetamide, and those of profenofos were 4-bromo-2-chlorophenol and O-ethyl-S-propyl phosphate.

  • PDF