• Title/Summary/Keyword: 2-axis motor control

Search Result 87, Processing Time 0.025 seconds

Development of two axis contouring control system based on stepping motor (스텝핑 모우터를 이용한 2축 윤곽제어 장치 개발에 관한 연구)

  • 김교형;이기설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.228-231
    • /
    • 1987
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Contouring error of the system in linear and circular path is within .+-.0.2 mm.

  • PDF

Design of Microprocessor Embedded 2-Axis Motor Control Chip (Microprocessor Embedded 2-Axis Motor Control Chip의 설계)

  • Roh, Kyu-Jin;Choi, Sung-Hyuk;Won, Jong-Baek;Kim, Jong-Eun;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.193-196
    • /
    • 2001
  • In this paper we designed CAMC-SP, the microprocessor embedded 2-axis motor control chip which controls a precise pulse motor by generating the pulse needed to control step motor, DC servo and AC servo motor. This design enables to decrease costs and to minimize a size. First we designed risc type 8-bit microprocessor compatible with PIC16C84, second we designed pulse motor controller. CAMC-SP is integrated of those two block. We designed CAMC-SP by VHDL and we testified to the Performance of it by performing functional simulation.

  • PDF

Development of Software Interpolator for Two-Axis Contouring Control (2축 윤곽제어를 위한 소프트웨어 보간자 개발에 관한 연구)

  • 김교형;이기설
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.389-396
    • /
    • 1988
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Conturing error of the system in linear and circular path is within .+-. 0.2mm under start stop pulse rate of stepping motor.

Advanced Field Weakening Control for Squirrel-Cage Induction Motor in Wide Range of DC-Link Voltage Conditions

  • Son, Yung-Deug;Jung, Jun-Hyung;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.665-673
    • /
    • 2017
  • This paper proposes a field weakening control method for operating an induction motor with a variable DC input voltage condition. In the variable DC voltage condition such as a battery, the field weakening method are required for the maximum output power. The conventional field weakening control methods can be used for operating the induction motor over the rated speed in a constant DC-link voltage condition. However, the conventional methods for operating the motor with the variable DC voltage is not suitable for the maximum output power. To overcome this problem, this paper proposes the optimized field weakening control method to extend the operating range of the induction motor with a rated power in a limited thermal and a wide DC input voltage conditions. The optimized d-axis and q-axis current equations are derived according to the field weakening region I and II to extend the operating region. The experimental results are presented to verify the effectiveness of the proposed method.

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.

Development of 4-axis CNC Controller for Removing Trajectory Error (궤적 오차를 제거한 4축 CNC 제어기의 개발)

  • 이치환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.406-409
    • /
    • 1997
  • An economical 4-axis CNC controller employing step motors is designed and implemented in this paper. By using the inherent ability of holding position of the motor, the CNC controller uses open-loop control for removing trajectory error and for a simple hardware. Each drive of axis has an 8-bit microprocessor 89C52 and a PC controls the axes and pendant by means of RS232C serial communication. Backlash is also compensated at the axis controller. While compensating the backlash, the feed rate becomes zero in order to minimize trajectory error. The trajectories of 16ms interval are computed on PC and are sent to motor drives. In the drives, the trajectories are linearly interpolated for 2ms interval. The developed CNC does not require add-on specific motion card on PC. From the experimental results, the validity of the CNC controller based on step motor is proved.

  • PDF

On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.600-608
    • /
    • 2014
  • This paper presents estimation of d-axis and q-axis inductance of an interior permanent magnet synchronous motor (IPMSM) by using an extended Kalman filter (EKF). The EKF is widely used for control applications including the motor sensorless control and parameter estimation. The motor parameters can be changed by temperature and air-gap flux. In particular, the variation of the inductance affects torque characteristics like the maximum torque per ampere (MTPA) control. Therefore, by estimating the parameters, it is possible to improve the torque characteristics of the motor. The performance of the proposed estimator is verified by simulations and experimental results based on an 11kW PMSM drive system.

Efficiency Optimization Control for High Performance Operation of Synchronous Reluctance Motor (동기 리럭턴스 전동기의 고성능 운전을 위한 효율 최적화 제어)

  • 정동화;이정철;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.51-56
    • /
    • 2001
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor (SynRM) which minimizes the copper and iron losses. fen exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

Optimal Unity Power Factor Control of Permanent Magnet Synchronous Motor with q-axis Field by Inverse LQ Method

  • Takami, Hiroshi
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.117-126
    • /
    • 2001
  • A synchronous motor(SM) with q-axis special field winding of which the q-axis field-current compensates and cancels armature reaction can be driven at unity power factor under the conditions of transient state as well as steady state. The motor operates in high efficiency in all conditions. However, in order to obtain maximum performance of the motor, it is required that the time constant of armature circuit corresponds to that of q-axis field circuit. Inverse LQ(ILQ) design method on a basis of the pole assignment is suitable for this problem:(1) The time constants of the output responses can be designed for desired specifications, (2) Relations between feedback gains and response of closed loop system are very clear and (3) Optimal solutions can be given by simple procedure of ILQ method without solving the Ricaati's equation, compared to the usual LQ design method. Accordingly, the ILQ method can make the responses of armature current and q-axis field-current correspond. In this paper, it is proved by numerical simulations and experiments that the ILQ method is very effective for optimal regulator design of this plant and realizes a high-performance motor with unity power factor and high efficiency.

  • PDF

KSLV-I Kick Motor System Thrust Axis Alignment (KSLV-I 킥모터 시스템 추력 축 정렬)

  • Lee, Han-Ju;Jung, Dong-Ho;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.138-142
    • /
    • 2010
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to align thrust axis to vehicle axis. This article deals with the simple method of thrust axis alignment of Kick Motor.