• Title/Summary/Keyword: 2-amino-thiazole

Search Result 13, Processing Time 0.018 seconds

Volatile Constituents of Processed Squid Product (오징어 가공품의 냄새성분에 관한 연구)

  • Chiaki Koiiumi;Toshiaki Ohshima;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.547-554
    • /
    • 1990
  • The precursor substance and volatile components of cooked flavor of squid meat were studied. Volatile components were trapped by simultaneous distillation-extraction method, and these were fractionated into the neutral, basic, phenolic and acidic fraction. Volatile flavor components in these frations were analyzed by GC and GC-MS. 80% methanol solution was the most effective solvent for extraction of the precursor substance for cooked flavor. The neutral and basic fraction, by organoleptic test, seem to have a major effect on squid-like flavor. Forty-four compounds, including 2 hydorcarbons, 10 alcohols, 5 aldehydes, 1 ketone, 1 furan, 3 sulfide compounds, 7 pyrazines, 2 pyridines, 1 amino, 2 phenols and 10 acids, identified as cooked flavor compounds of squid meat.

  • PDF

Formation of Meatlike Flavors by Maillard Reaction Using Hydrolyzed Vegetable Protein (HVP) (HVP를 이용한 Maillard 반응에 의한 Meatlike Flavor의 생성)

  • Yoon, Suk-Hwan;Lee, Jung-Keun;Nam, Hee-Sop;Lee, Hyung-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.781-786
    • /
    • 1994
  • Meatlike flavors were manufactured using hydrolyzed vegetable protein (HVP) with several reactive precursors at different reaction conditions. Both pH and temperature affected significantly on brown colority of reaction product, whose velocity became fast with increasing pH and temperature. Drastic decrease in residual reducing sugars and free amino acids appeared until 1 hour, being little affected by reaction temperature. Glutamic acid and cysteine were decreased with reaction time, whereas glycine and methionine remained constant. Forty nine aroma compounds formed through Maillard reaction were isolated and identified with GC/MSD, including 3-methyl butanal, 2-methyl tetrahydrothiophen-3-one, 3,4-dimethylthiophene and 2,4-dimethyl thiazole previously known as natural meat flavors. The sensory evaluation showed that one-hour reaction product was the highest in savory taste and the lowest in nasty taste on the level of 5% significant difference among all reaction products tested in this experiment. From the results above, it could be speculated that the initial stage of Maillard reaction in this experimental system occured until one hour, thereafter, savory taste decreased accompanied by increasing nasty taste with elapsed reaction time.

  • PDF

Antifungal activities for derivatives of 4-isopropyl-3-methylphenol and 5-isopropyl-3-methylphenol against plant pathogenic fungi (4-Isopropyl, 5-isopropyl-3-methylphenol 유도체들의 합성과 식물 병원균에 대한 항균 활성)

  • Choi, Won-Sik;Jang, Soon-Ho;Jang, Do-Yeon;Choi, Kyoung-Gil;Lee, Byung-Ho;Kim, Tae-Jun;Jung, Bong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.249-261
    • /
    • 2006
  • Fifty compounds such as ester, sulfonyl ester, carbamate, ether and phosphoyl ester derivatives of 4-isopropyl-3-methylphenol(I) and 5-isopropyl-3-methylphenol(II) were synthesized. These derivatives were identified by IR, GC/MS and $^1H$-NMR spectra. Their in vitro antifungal activities were tested against 10 plant pathogenic fungi. Among them, several compounds showed potent in vitro antifungal activity. The selected compounds showing potent in vitro antifungal activity were tested for their in vivo antifungal activities against 5 plant diseases such as rice blast, rice sheath blast, cucumber anthracnose, cucumber gray mold and tomato late blight. As a result, 4-isopropyl-3-methylphenyl(2-amino-thiazole-4-yl)methoxyiminoacetate(I-7a) showed a potent in vivo antifungal activity against rice blast. Both methyl (4-isopropyl-3-methylphenoxy)acetate(I-4d) and methyl (5-isopropyl-3-methylphenoxy)acetate(II-4d) effectively inhibited the development of cucumber gray mold.