• Title/Summary/Keyword: 2-Spool Turbofan Engine

Search Result 10, Processing Time 0.023 seconds

Steady-state Performance Simulation and Operation Diagnosis of a 2-spool Separate Flow Type Turbofan Engine (2스풀 분리 배기 방식 엔진의 정상상태 성능모사 및 작동 진단)

  • Choo, KyoSeung;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2019
  • There is a growing interest in engine diagnostic technology for gas turbine engines. An engine simulation program, precisely simulating the engine performance, is required in order to apply it to the engine diagnosis technology for engine health monitoring. In particular, the simulation program can predict not only design point performance but also off-design point and partial load performance in accurate. So the engine simulation program for the 2-spool separate flow type turbofan engine was developed and the JT9D-7R4G engine of PW(Pratt & Whitney) was analyzed. The steady-sate performance analysis is conducted at both design and off-design points in flight path and the differences between analysis results of takeoff and cruise conditions are compared. The effect of Reynold's correction method was analyzed as a scaling method of the engine component performance. The simulation results was compared with NPSS.

Study on Fault Diagnostics Considering Sensor Noise and Bias of Mixed Flow Type 2-Spool Turbofan Engine using Non-Linear Gas Path Analysis Method and Genetic Algorithms (혼합배기가스형 2 스풀 터보팬 엔진의 가스경로 기법과 유전자 알고리즘 이용한 센서 노이즈 및 바이어스를 고려한 고장진단 연구)

  • Kong, Changduk;Kang, Myoungcheol;Park, Gwanglim
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-18
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Steady-State Performance Simulation and Engine Condition Monitoring for 2-Spool Separate Flow Type Turbofan Engine (2-스풀 분리배기 방식 터보팬 엔진의 성능모사 및 진단에 관한 연구)

  • Gong, Chang Deok;Gang, Myeong Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.60-68
    • /
    • 2003
  • In this study, a steady state performance analysis program was developed for a turbofan engine, and its performance was analyzed at installed conditions. For the purpose of evaluation, the developed program was compared with the performance data provided by the engine manufacturer. It was confirmed that the developed program was reliable because the results by the developed program were well agreed with those by the engine manufacturer within 3.5%. The non-linear GPA(Gas Path Analysis) program for performance diagnostics were developed, and selection of optimal measurement variables was studied. Furthermore, in order to investigate effects of the number and the kind of measurement variables, the non-linear GPA was analyzed with various measurement sets. Finally, the measurement parameters selected in the previous step were applied to the fault detection analysis of the 2-spool separate flow type turbofan engine.

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

Study on Component Map Generation and Performance Simulation of 2-spool Separate Flow Type Turbofan Engine Using SIMULINK (SIMULINK를 이용한 2-스풀 분리형 배기방식 터보팬 엔진의 구성품 성능맵 생성 및 성능모사에 관한 연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate-flow turbofan engine named (BR715-56) which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

Study on Condition Monitoring of 2-Spool Turbofan Engine Using Non-Linear GPA(Gas Path Analysis) Method and Genetic Algorithms (2 스풀 터보팬 엔진의 비선형 가스경로 기법과 유전자 알고리즘을 이용한 상태진단 비교연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.71-83
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK (SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석)

  • Kong, Chang-Duk;Park, Gil-Su;Lee, Kyung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.219-224
    • /
    • 2012
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate jet turbofan engine named BR715-56 which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

  • PDF

Performance optimization control of supersonic variable cycle engines

  • Tagashira, Takeshi;Sugiyama, Nanahisa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.779-783
    • /
    • 2004
  • First this paper introduces an advanced FADEC (Full Authority Digital Electric Control) for current and future jet engines.It is designed to realize not only stable thrust control, but also performance improvement, reliability enhancement, service life extension, etc. It can be built by using current micro-processor with high computational power and there exists no difficulties but reliability problem of the micro- processor. Next, the simulation results of SFC minimization control are shown. The target engine is a supersonic, low-bypass ratio, 2-spool, combined cycle turbofan, designated as HYPR90T, which consists of a turbo engine for under Mach 3 flight and a ram engine for over Mach 3 flight. he results can then be used for performance optimization of the engine, which plays important role in the advanced FADEC.

  • PDF

A Simple Thermal Model of Fuel Thermal Management System in Aircraft Engine

  • Youngjin Kim;Jeonghwan Jeon;Gonghoe Gimm
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2023
  • The architecture of the Fuel Thermal Management System (FTMS) in a commercial aircraft engine was built to model and simulate the fuel system. The study shows the thermal interactions between the fuel and engine lubrication oil through the mission profile of a high bypass ratio, two-spool turbofan engine. Fuel temperature was monitored as it flowed through each sub-component of the fuel system during the mission. The heat load in the fuel system strongly depended on the fuel flow rate, and was significantly increased for the periods of cruise and descent with decrease of fuel flow rate, rather than for the periods of take-off. Due to the thermal interaction in the pump housing, the fuel temperature at the outlet of the low-pressure pump was increased (4.0, 9.2, and 30.0) % over the case without thermal interaction for take-off, cruise, and descent, respectively.