• Title/Summary/Keyword: 2-Methylisoborneol

Search Result 27, Processing Time 0.026 seconds

Analysis of trace odorous compounds (geosmin and 2-methylisoborneol) in water by using GC/MS (물 중의 극미량 냄새 유발 물질인 Geosmin과 2-methylisoborneol의 GC/MS 분석법 연구)

  • Kim, Tae-Jon;Kim, Byung-Joo;So, Hun-Young;Kwang, Ho
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.534-539
    • /
    • 2002
  • We established an analytical method for the measurement of trace amounts of earthy/musty odorous geosmin (GSM) and 2-methylisoborneol (2-MIB) in water using GC/MS. Water samples were extracted with n-hexane (liquid-liquid extraction, LLE) and the extracts were measured by GC/MS. The extraction yields of the two compounds were tested to be ($87{\pm}8$)% and ($78{\pm}8$)%, respectively. The limits of quantitation (LOQs) of the two compounds by this method were greatly improved to ~0.3 ng/L. The analytical methods were applied to analyze water samples from several rivers in Korea and waters after water treatment processes. The highest levels of geosmin and 2-methylisoborneol in raw water from a river were measured to be ($4.2{\pm}0.4$) ng/L and ($44{\pm}4$) ng/L, respectively. The levels only slightly decreased to ($1.3{\pm}0.1$) ng/L and ($18{\pm}2$) ng/L even after water treatment, indicating that the odorous compounds were not properly removed by the treatment processes.

Effects of Inoculated Bacillus subtilis on Geosmin and 2-Methylisoborneol Removal in Suspended Growth Reactors Using Aquacultural Waste for Biofloc Production

  • Luo, Guozhi;Wang, Jiao;Ma, Niannian;Liu, Zefeng;Tan, Hongxin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1420-1427
    • /
    • 2016
  • Geosmin and 2-methylisoborneol (2-MIB) are two of the most common taint compounds that adversely affect the quality of aquacultural animals. In the present study, 94% of geosmin and 97% of 2-MIB in suspended growth reactors producing bioflocs (SGRs) with aquaculture waste were removed after inoculation with Bacillus subtilis, significantly higher than that of control SGRs (70% of geosmin and 86.4% of 2-MIB). The lowest concentrations of geosmin and 2-MIB achieved in the effluent of the SGRs were 2.43 ± 0.42 ng/l and 2.23 ± 0.15 ng/l, respectively. The crude protein content of the bioflocs produced in the SGRs was 35 ± 4%. The NH4+-N and NO2--N concentrations in the effluent of the reactors were 1.13 ± 0.21 mg/l and 0.42 ± 0.04 mg/l, respectively. These results suggest that inoculated with Bacillus subtilis, SGRs have a better performance to reuse the nitrogen in fish waste and to remove geosmin and 2-MIB from the culture water efficiently.

Effects of Environmental Factors on Cyanobacterial Production of Odorous Compounds: Geosmin and 2-Methylisoborneol

  • Oh, Hyung-Seok;Lee, Chang Soo;Srivastava, Ankita;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1316-1323
    • /
    • 2017
  • Geosmin and 2-methylisoborneol (2-MIB), responsible for earthy or musty smell, are a major concern for safe drinking water supplies. This study investigated the effects of environmental factors on odorous compound production and cell growth in cyanobacterial strains. Anabaena sp. FACHB-1384, a 2-MIB producer, was sensitive to low temperature (<$20^{\circ}C$). However, geosmin producers, Anabaena sp. Chusori and Anabaena sp. NIER, were sensitive to high light intensity (>$100{\mu}mol/m^2/sec$), but not to low temperature. Geosmin concentrations increased under higher nitrate concentrations, being linearly proportional to cell density. A P-limited chemostat showed that P-stress decreased the geosmin productivity and extracellular geosmin amount per cell in Anabaena sp. NIER. However, only 2-MIB productivity was reduced in Planktothrix sp. FACHB-1374 under P-limitation. The extracellular 2-MIB amount per cell remained constant at all dilution rates. In conclusion, high light intensity and P-stress can contribute to the lower incidence of geosmin, whereas 2-MIB reduction could be attainable at a lower temperature.

The Characteristics of Oxidation and Adsorption Processes for 2-Methylisoborneol(2-MIB) Removing (2-Methylisoborneol(2-MIB)제거를 위한 산화 및 흡착공정의 특성)

  • 최근주;김상구;류동춘;신판세;손인식;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • One of the Musty and earthy smell compounds in raw water is generally attributed to 2-methylisoborneol (2-MIB). It is well known that activated carbon and oxidants such as $O_3$, Cl $O_2$, are effective ways to control 2-MIB. In isotherm equilibrium experiments, 2-MIB in distilled water was much more adsorbed to the activated carbon(A/C) than raw water containing dissolved organic carbon (DOC). The Freundlich constants(k) of distilled water and raw water were 3.36 and 0.049, and 1/n values were 0.80 and 0.42, respectively. The 2-MIB residual rate were Y = $e^{-0}$.55x/~ $e^{-0}$.54x/ with Ozone( $O_3$) dose by 5 minutes contact time at the 241 and 353 ng/L initial concentrations. The 2-MIB residual rate were Y = $e^{-0}$.32x/~ $e^{-0}$.35x/ with Chlorine dioxide(Cl $O_2$) dose by 15 minutes contact time at the 89 and 249 ng/L initial concentrations. 2-MIB was decreased from 1911 ng/L to 569ng/L by post-ozonation(70%removal efficiency) and removal efficiencies of 2-MIB by the following 4 kinds Granular Activated Carbon(GAC) process such as coal base, coconut base, wood base and zeolite+carbon base were 95.8, 89.5, 88.4, and 93.7% respectively.ely.

A Study of Efficient Removal of 2-Methylisoborneol and Geosmin by Pulsed Ultraviolet and Ultrasound (효율적인 2-Methylisoborneol, Geosmin의 제거를 위한 Pulsed UV 공정과 Ultrasound 공정의 비교 연구)

  • Han, Jonghun;Hur, Jiyong;Kim, Kangwook;Lee, Junyoung;Park, Wonseok;Lee, Jongyeol;Her, Namguk
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • The degradation of off-flavors which is 2-Methylisoborneol (2-MIB) and geosmin by means of ultrasound (US) and pulsed ultraviolet (PUV) irradiation and its combination with catalyst (wire mesh, wire mesh coated TiO2, and TiO2) and additive (H2O2) were investigated via water system. A combination treatment of TiO2 and H2O2 heterogeneity with US (24 kHz) and PUV (6000 W) has shown improved results in destroying 2-MIB and geosmin, which may be attributed to chain reactions by the enhanced formation of hydroxyl radicals (·OH) through H2O2 dissociation and reactive oxide ions of TiO2 addition. Rapid degradation of off-flavors occurred within 2 min under PUV process with H2O2 100 mg/L (81.5% for 2- MIB; 79.3% for geosmin) and TiO2 100 mg/L (83.7% for 2-MIB; 79.8% for geosmin), while compared with H2O2 100 mg/L (58.4% for 2-MIB; 58.0% for geosmin) and TiO2 100 mg/L (59.2% for 2-MIB; 38.5% for geosmin) within 5 min under US process. Surprisingly, the emphasis was given on the comparison with the same injected energies between PUV and US on degradation efficiency. Based on the injected energy comparison, the US provided better degradation performance under equal input power of 200 kJ with H2O2 100 mg/L, while compared with H2O2 100 mg/L under PUV process. Our findings suggest that US can be more effective compared to PUV for the degradation of off-flavors in aspect of energy consumptions.

Isolation of bacteria capable of removing 2-methylisoborneol and effect of cometabolism carbon on biodegradation

  • Du, Kang;Liu, Jian;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.256-264
    • /
    • 2016
  • 2-Methylisoborneol (2-MIB) is one of typical odorants in potable water sources, which is hardly removed by conventional water treatment process. In this study, three strains capable of removing 2-MIB singly from drinking water were isolated from activated carbon of sand filter. They were identified to be Shinella zoogloeoides, Bacillus idriensis and Chitinophagaceae bacterium based on 16S rRNA gene sequence analysis. In mineral salts medium without external carbon source, removal efficiencies of $20{\mu}g/L$ 2-MIB in three days were 23.3%, 32.9% and 17.0% for Shinella zoogloeoides, Bacillus idriensis and Chitinophagaceae bacterium, respectively. The biodegradation of 2-MIB was significantly improved with the presence of cometabolism carbon(glycerol, glucose, etc.). In the period of 20 days, Bacillus idriensis can remove 2 mg/L MIB to $368.2{\mu}g/L$ and $315.4{\mu}g/L$ in mineral salts medium without and with glycerol respectively. The removal of 2-MIB by Bacillus idriensis was from 2 mg/L to $958.4{\mu}g/L$ in Xiba river samples on 15 days.

Removal of Geosmin and 2-methylisoborneol in Drinking Water by Powdered Activated Carbon (분말 활성탄에 의한 먹는 물 내의 이취미 물질 제거)

  • Chae, A Na;Shin, Jae Won;Cho, Kang Woo;Lee, Byung Chan;Song, Kyung Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.475-483
    • /
    • 2017
  • Geosmin and 2-methylisoborneol (2-MIB) produced by cyanobacteria during algal blooming in surface water are the major taste-and-odor-causing compounds in drinking water and need to be removed. Activated carbon is often used in treatment plants for the mitigation of odor problem. However, there is a lack of information on the effect of pore size distribution and particle size of activated carbon for adsorption of both odor compounds. Therefore, we studied the effect of pore size distribution and particle size of activated carbon on the adsorption of geosmin and 2-MIB. When comparing the adsorption of geosmin and 2-MIB between activated carbon fiber (ACF), powdered activated carbon (PAC) and granular activated carbon (GAC), the order of removal efficiency was PAC > ACF > GAC. As a result of comparing PACs with various pore distribution characteristics, well-developed micropores on activated carbon were found to be favorable for adsorption of geosmin and 2-MIB. For particle size, smaller was more effective for adsorption of geosmin and 2-MIB.

Evaluation of Removal Characteristics of Taste and Odor causing Compounds and Organic matters using Ozone/Granular Activated Carbon($O_{3}$/GAC) Process (오존($O_{3}$).입상활성탄(GAC) 공정을 이용한 맛.냄새 유발물질과 유기물질의 제거특성 평가)

  • Ham, Young-Wan;Ju, Young-Gil;Oh, Hyo-Keun;Lee, Byung-Wook;Kim, Hyun-Ki;Kim, Deok-Goo;Hong, Seung-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.237-247
    • /
    • 2012
  • This study assessed the removal characteristics of taste and odor causing compounds (2-methylisoborneol and geosmin) and organic matters, using a pilot-scale ozone/granular activated carbon ($O_{3}$/GAC) process treating surface water of Pal-dang reservoir in the Han river over a 3-month period. Experiments were conducted to verify the removal efficiency of $O_{3}$/GAC process which has two different empty bed contact time (EBCT) ($O_{3}$/GAC column 1 : 10 min and 2 : 15.1 min) with 10.86 min contact time of ozonation at 1.0 mg/L $O_{3}$. Spiking test using geosmin and 2-MIB was also conducted systematically to mimic the conditions when the algae appears, specifically at the levels similar to the concentrations experienced (geosmin: 250 ng/L) in the winter of 2011. In single ozonation process, organic materials, disinfection by-products (DBPs) and their precursors were disassembled but not removed completely. Meanwhile, it was verified that organic matters, taste and odor causing compounds, and DBPs were well removed when sequentially passing through the GAC process. The pilot results also showed that GAC column with larger EBCT achieved higher removal efficiency. Specifically, in spiking tests, single $O_{3}$ process showed approximately 89% removal efficiency of geosmin and 2-MIB. $O_{3}$/GAC combined process demonstrated excellent removal of geosmin and 2-MIB, which are higher than 95%.

Removal Property of Taste and Odor Causing Material in Pulsator Clarifier (맥동식 침전지에서 맛·냄새 유발물질 제거 특성)

  • Jeong, Il Yong;Cha, Min Whan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.104-109
    • /
    • 2011
  • The removal efficiencies of 2-methylisoborneol (MIB) and geosmin were investigated to reveal removal characteristics of typical organic compounds causing disagreeable taste and odor at the conventional water treatment plant installed with pulsator clarifier patented by the French company $Degr{\acute{e}}mont$. The injection rate of Powdered Activated Carbon (PAC) into water was changed step wisely as we conducted jar tests in the laboratory and water treatment in the actual plant. 2-MIB concentration decreased linearly while geosmin did exponentially along with the injection rate of PAC at our jar tests. The removal efficiency of geosmin by PAC injection was considerably higher than that of 2-MIB. In the real pulsator clarifier, 2-MIB concentration started decreasing as the injection rate reached up to 10 mg/L of PAC. On the other hand, the concentration of geosmin in water decreased proportional to the injection rate of PAC. In the sand filtration, removal efficiencies of 2-MIB and geosmin on July were much higher than those on March. It was carefully suggested beforehand and found afterwards that general microorganisms notably existed in the sand filter with no chlorine in filter influent and backwash water and the sand filter biologically activated removed much more odor compounds. It was considered as the reason why the removal efficiency of 2-MIB and geosmin was increased. The microbial activity maybe increased in summer with water temperature rising and low filtration rate possibly increased contact time between odor compounds and general microorganisms.