• Title/Summary/Keyword: 2-Methoxyestradiol

Search Result 4, Processing Time 0.022 seconds

Tumor Suppressor Protein p53 Promotes 2-Methoxyestradiol-Induced Activation of Bak and Bax, Leading to Mitochondria-Dependent Apoptosis in Human Colon Cancer HCT116 Cells

  • Lee, Ji Young;Jee, Su Bean;Park, Won Young;Choi, Yu Jin;Kim, Bokyung;Kim, Yoon Hee;Jun, Do Youn;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1654-1663
    • /
    • 2014
  • To examine the effect of tumor suppressor protein p53 on the antitumor activity of 2-methoxyestradiol (2-MeO-$E_2$), 2-MeO-$E_2$-induced cell cycle changes and apoptotic events were compared between the human colon carcinoma cell lines HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$). When both cell types were exposed to 2-MeO-$E_2$, a reduction in the cell viability and an enhancement in the proportions of $G_2/M$ cells and apoptotic sub-$G_1$ cells commonly occurred dose-dependently. These 2-MeO-$E_2$-induced cellular changes, except for $G_2/M$ arrest, appeared to be more apparent in the presence of p53. Immunofluorescence microscopic analysis using anti-${\alpha}$-tubulin and anti-lamin B2 antibodies revealed that after 2-MeO-$E_2$ treatment, impaired mitotic spindle network and prometaphase arrest occurred similarly in both cell types. Following 2-MeO-$E_2$ treatment, only HCT116 ($p53^{+/+}$) cells exhibited an enhancement in the levels of p53, p-p53 (Ser-15), $p21^{WAF1/CIP1}$, and Bax; however, the Bak level remained relatively constant in both cell types, and the Bcl-2 level decreased only in HCT116 ($p53^{+/+}$) cells. Additionally, mitochondrial apoptotic events, including the activation of Bak and Bax, loss of ${\Delta}{\psi}m$, activation of caspase-9 and -3, and cleavage of lamin A/C, were more dominantly induced in the presence of p53. The Bak-specific and Bax-specific siRNA approaches confirmed the necessity of both Bak and Bax activations for the 2-MeO-$E_2$-induced apoptosis in HCT116 cells. These results show that among 2-MeO-$E_2$-induced apoptotic events, including prometaphase arrest, up-regulation of Bax level, down-regulation of Bcl-2 level, activation of both Bak and Bax, and mitochondria-dependent caspase activation, the modulation of Bax and Bcl-2 levels is the target of the pro-apoptotic action of p53.

Mitogenic Estrogen Metabolites Alter the Expression of β-estradiol-regulated Proteins Including Heat Shock Proteins in Human MCF-7 Breast Cancer Cells

  • Kim, Seong Hwan;Lee, Su-Ui;Kim, Myung Hee;Kim, Bum Tae;Min, Yong Ki
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.378-384
    • /
    • 2005
  • Estrogen metabolites are carcinogenic. The comparative mitogenic activities of $17{\beta}$-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1) and 2-methoxyestradiol (2-ME), were determined in estrogen receptor(ER)-positive MCF-7 human breast cancer cells. Each of the E2 metabolites caused proliferation of the MCF-7 cells, but only E2 and $16{\alpha}$-OHE1 induced a greater than 20-fold increases in transcripts of the progesterone receptor (PR) gene, a classical ER-mediated gene. This suggests that the mitogenic action of E2 and $16{\alpha}$-OHE1 could result from their effects on gene expression via the ER. E2 metabolites altered the expression of E2-regulated proteins including heat shock proteins (Hsps). $16{\alpha}$-OHE1 and 2-ME as well as E2 increased levels of Hsp56, Hsp60, $Hsp90{\alpha}$ and Hsp110 transcripts, and the patterns of these inductions resembled that of PR. Hsp56 and Hsp60 protein levels were increased by all the E2 metabolites. Levels of the transcripts of 3 E2-upregulated proteins (XTP3-transactivated protein A, protein disulfide isomerase-associated 4 protein and stathmin 1) and an E2-downregulated protein (aminoacylase 1) were also affected by the E2 metabolites. These results suggest that the altered expression of Hsps (especially Hsp56 and Hsp60) by E2 metabolites such as E2, $16{\alpha}$-OHE1 and 2-ME could be closely linked to their mitogenic action.

Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells (미세소관-손상 항암제 처리에 의한 세포주기의 정지 및 에폽토시스 유도)

  • Jun, Do Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.376-386
    • /
    • 2016
  • Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced apoptosis is mainly regulated by the tumor suppressor protein p53, and since more than half of clinical cancers possess inactive p53 mutants, microtubule-damaging agents (MDAs), of which apoptotic effect is mainly exerted via p53-independent routes, can be promising choice for cancer chemotherapy. Recently, we found that the apoptotic signaling pathway induced by MDAs (nocodazole, 17α-estradiol, or 2-methoxyestradiol) commonly proceeded through mitotic spindle defect-mediated prometaphase arrest, prolonged Cdk1 activation, and subsequent phosphorylation of Bcl-2, Mcl-1, and Bim in human acute leukemia Jurkat T cells. These microtubule damage-mediated alterations could render the cellular context susceptible to the onset of mitochondria-dependent apoptosis by triggering Bak activation, Δψm loss, and resultant caspase cascade activation. In contrast, when the MDA-induced Bak activation was inhibited by overexpression of anti-apoptotic Bcl-2 family proteins (Bcl-2 or Bcl-xL), the cells in prometaphase arrest failed to induce apoptosis, and instead underwent mitotic slippage and endoreduplication cycle, leading to formation of populations with 8N and 16N DNA content. These data indicate that cellular apoptogenic mechanism is critical for preventing polyploid formation following MDA treatment. Since the formation of polyploid cells, which are genetically unstable, may cause acquisition of therapy resistance and disease relapse, there is a growing interest in developing new combination chemotherapies to prevent polyploidization in tumors after MDA treatment.

Effect of Whalakyuoleyng-dan plus Yinsamyangwui-tang on Anti-angionesis (활락효영단합인삼양위탕(活絡效靈丹合人蔘養胃湯)이 혈관신생(血管新生) 억제(抑制)에 미치는 영향(影響))

  • Ko, Ki-Wan;Park, Joon-Hyuk;Kang, Hee;Kim, Sung-Hoon;Yu, Young-Beob;Shim, Bum-Sang;Choi, Seung-Hoon;Ahn, Koo-Seok
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.7 no.1
    • /
    • pp.77-97
    • /
    • 2001
  • Anti-angiogenesis is one of therapies which have been high-lightened on the research of cancer treatment. Anti-angiogenesis means that new blood vessels are created from a existing capillary tube and it is a important process on metastasis and permeation when cancer is created or formed. Since angiogenesis have been under research, a complete recovery oriented treatment against cancer have been suggested blocking metastasis, delaying the growth of cancer cell, and blocking the supply of oxygen and nutritive substance through the web of blood vessels. Until now, there are several anti-angiogenesis, which have been known to the public, such as thalidomide, angiostatin, endostatin, 2-methoxyestradiol, TNP-470, and marimastat, etc. Additionally, 17 clinical testing projects about anti-angiogenesis are on the process in NCI(National Cancer Institute). Especially, TNP-470 showed effectiveness against cancer on clinical testing after finishing animal testing. Based on existing researches showing that Yinsamyangwui-tang is effective to strengthening body resistance and Whallakhyolenyng-dan effects cells on the inside of blood vessel because Whallakhyolenyng- dan restrains cell adhesion during the restraining period of a blood vessel, I tried to research the effect of Whalakhyolenyng-dan plus Yinsamyangwui-tang on angiogenesis. I made a conclusion putting into operation through using SK-Hep-1 (KCLB 30052), A549(KCLB 10185), AGS(KCLB 21739), and BCE(Bovine Capillary Endothelial Cell). Followings are the results of my experimental research: 1. According to the researching results of anti-cancer activation against cancer cell, Whallkhyoleyng dan plus Yinsamyangwui-tang decreased the number of cancer cells -- While injecting $600{\mu}g/ml$, injected groups decreased 3.1% more comparing with the contrastive group of SK-Hep-1, 49.7% more comparing with the contrastive group of A549, and 31.0% more comparing with the contrastive group of AGS. 2. According to the researching results of DNA composition effect between BCE and cancer cell, Whallakhyoleyng-dan plus Yinsamyangwui-tang reduced the rate of SK-Hep-1 synthesis inhibition by 59.1% at $600{\mu}g/ml$ intensity comparing with contrastive group; for A549, 72.6%; for AGS, 6.1%, for BCE, 28.9%. 3. According to the researching results about the effect of BCE cell to angiogenesis, angiogenesis was restrained at $400{\mu}g/ml$ intensity during 18 hours observation. 4. In the case of aortic ring assay, the half level of angiogenesis was reduced comparing with the contrastive group while injecting with $400{\mu}g/ml$ intensity; with $800{\mu}g/ml$, under 10% comparing with contrastive group; and with $1600{\mu}g/ml$, complete restrain. According to the above results, Whallakhyoleyng-dan plus Yinsamyangwui-tang was proved to have an anti-angiogenetic effects.

  • PDF