• Title/Summary/Keyword: 2-Deoxy-scyllo-Inosose Synthase

Search Result 3, Processing Time 0.009 seconds

Identification of 2-Deoxy-scyllo-inosose Synthase in Aminoglycoside Producer Streptomyces

  • Kharel, Madan-Kumar;Subba, Bimala;Lee, Hei-Chan;Liou, Kwang-Kyoung;Woo, Jin-Suk;Kim, Dong-Hwan;Moon, Young-Ho;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.828-831
    • /
    • 2003
  • Although most of the DOS containing aminoglycosides are produced by Streptomyces, very little information is available about their biosynthesis. In the present paper, we report a method to isolate DOI synthase, a key enzyme in the biosynthesis of DOS, from aminoglycoside producer Streptomyces. PCR primers based on conserved region of DOI synthases were specific and reliable for the isolation of the biosynthetic genes of DOS containing aminoglycosides or the screening of the aminoglycoside producers. The use of DOI synthase as a probe could save both time and cost of cloning aminoglycoside biosynthetic genes.

The Ribostamycin Biosynthetic Gene Cluster in Streptomyces ribosidificus: Comparison with Butirosin Biosynthesis

  • Subba, Bimala;Kharel, Madan Kumar;Lee, Hei Chan;Liou, Kwangkyoung;Kim, Byung-Gee;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.90-96
    • /
    • 2005
  • A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.

Heterologous Production and Detection of Recombinant Directing 2-Deoxystreptamine (DOS) in the Non-Aminoglycoside-Producing Host Streptomyces venezuelae YJ003

  • Kurumbang, Nagendra Prasad;Oh, Tae-Jin;Liou, Kwangkyoung;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.866-873
    • /
    • 2008
  • 2-Deoxystreptamine is a core aglycon that is vital to backbone formation in various aminoglycosides. This core structure can be modified to develop hybrid types of aminoglycoside antibiotics. We obtained three genes responsible for 2-deoxystreptamine production, neo7, neo6, and neo5, which encode 2-deoxy-scyllo-inosose synthase, L-glutamine: 2-deoxy-scyllo-inosose aminotransferase, and dehydrogenase, respectively, from the neomycin gene cluster. These genes were cloned into pIBR25, a Streptomyces expression vector, resulting in pNDOS. The recombinant pNDOS was transformed into a non-aminoglycoside-producing host, Streptomyces venezuelae YJ003, for heterologous expression. Based on comparisons of the retention time on LC-ESI/MS and ESI-MS data with those of the 2-deoxystreptamine standard, a compound produced by S. venezuelae YJ003/pNDOS was found to be 2-deoxystreptamine.