• Title/Summary/Keyword: 2-D flood modeling

Search Result 49, Processing Time 0.02 seconds

Assessing the capability of HEC-RAS coupled 1D-2D model through comparison with 2-dimensional flood models

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.158-158
    • /
    • 2019
  • Recent studies show the possibility of more frequent extreme events as a result of the changing climate. These weather extremes, such as excessive rainfall, result to debris flow, river overflow and urban flooding, which post a substantial threat to the community. Therefore, an effective flood model is a crucial tool in flood disaster mitigation. In recent years, a number of flood models has been established; however, the major challenge in developing effective and accurate inundation models is the inconvenience of running multiple models for separate conditions. Among the solutions in recent researches is the development of the combined 1D-2D flood modeling. The coupled 1D-2D river flood modeling allows channel flows to be represented in 1D and the overbank flow to be modeled over two-dimension. To test the efficiency of this approach, this research aims to assess the capability of HEC-RAS model's implementation of the combined 1D-2D hydraulic simulation of river overflow inundation, and compare with the results of GERIS and FLUMENS 2D flood model. Results show similar output to the flood models that had used different methods. This proves the applicability of the HEC-RAS 1D-2D coupling method as a powerful tool in simulating accurate inundation for flood events.

  • PDF

Two-Dimensional(2-D) Flood Inundation Modeling Considering Mesh Type and Resolution (격자유형과 해상도를 고려한 2차원 홍수범람 모델링)

  • Kim, Byunghyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2019
  • In this study, 2-D Godunov type finite volume model which can apply the mixed mesh including triangular and quadrilateral meshes for flood inundation modeling is used to compare and analyze the flood height, flood extent and model execution time according to mesh type and resolution. The study area is the Upton-upon Severn watershed in Great Britain, where the flood occurred for 22 days from October 29 to November 19, 2000. For the flood modeling, topographic data were constructed using high resolution LiDAR (Light Detection And Ranging). The results of the 2-D flood modeling by the mesh type and resolution were compared with four ASAR (Airborne Synthetic Aperture Radar) images captured during the flood period. This study has shown that flood height and extent can vary greatly depending on the mesh type and resolution, even if identical topography and boundary conditions are used, and that the selection of appropriate mesh type and resolution for the purpose and situation of the 2-D flood modeling is necessary.

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Flood Stage Evaluation for Vegetated Models in River Scales (하천규모에 따른 식생모델의 홍수위 검토)

  • Lee, Jong-Seok;Kim, Byeong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.509-518
    • /
    • 2010
  • This study aims to evaluate for flood stage on vegetated patterns by clearance space rate (CSR) using the numerical models divided into large, medium and small river in river scales with watershed area or design flood discharge. Using the HEC-RAS (1D) and RMA-2 (2D) numerical models, evaluated results of the design flood stages before vegetated modeling of these rivers which CSR in the 1D are obtained over 100% at all points in large river and medium river of except upper part 2 sections, but small river is showed about average 46.0%. It is judge that evaluated results in the 2D are obtained average 101.5% in large river, 96.7% in medium river, 71.1% in small, respectively and because of 1D mainly used to formulate of the river's master plan. However, after vegetated modeling, CSR in case of 1D showed with 91.8% in large river, 74.2% and 38.3% in medium and small rivers, respectively and 2D showed with 95.5% in large river, 86.72 and 37.0% in medium and small rivers, respectively. It is estimate that evaluated results using the 2 numerical models by the vegetated modeling are less affected the CSR for large river in a large area more than the cross section area in medium and small rivers.

FLO-2D Simulation of the Flood Inundation Zone in the Case of Failure of the Sandae Reservoir Gyeongju, Gyeongbuk (댐붕괴 모형과 FLO-2D를 연동한 산대저수지 붕괴 침수 모의)

  • Go, Dae-hong;Lee, Khil-Ha;Kim, Jin-Man;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2015
  • The compilation of a flood hazard map is an efficient technique in managing areas at risk of flooding in the case of a dam-break. A scenario-based numerical modeling approach is commonly used to compile a flood hazard map related to dam-break and to determine the model parameters that capture peak discharge, including breach formation and progress, which are important in the modeling method. This approach might be considered less reliable if an existing model is used without local validation. In this study, a dam-break model is linked to a routing model to identify flood-risk areas in the case of failure of the Sandae Reservoir Gyeongju, Gyeongbuk. Model parameters are extracted from a DEM, and maps of land use and soil texture. The simulation results are compared with on-site investigations in terms of inundation and depth. The model reproduces the inundation zone with reasonable accuracy.

Real-Time Forecast of Rainfall Impact on Urban Inundation (강우자료와 연계한 도시 침수지역의 사전 영향예보)

  • KEUM, Ho-Jun;KIM, Hyun-Il;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.76-92
    • /
    • 2018
  • This study aimed to establish database of rainfall inundation area by rainfall scenarios and conduct a real time prediction for urban flood mitigation. the data leaded model was developed for the mapping of inundated area with rainfall forecast data provided by korea meteorological agency. for the construction of data leaded model, 1d-2d modeling was applied to Gangnam area, where suffered from severe flooding event including september, 2010. 1d-2d analysis result agree with observed in term of flood depth. flood area and flood occurring report which maintained by NDMS(national disaster management system). The fitness ratio of the NDMS reporting point and 2D flood analysis results was revealed to be 69.5%. Flood forecast chart was created using pre-flooding database. It was analyzed to have 70.3% of fitness in case of flood forecast chart of 70mm, and 72.0% in case of 80mm flood forecast chart. Using the constructed pre-flood area database, it is possible to present flood forecast chart information with rainfall forecast, and it can be used to secure the leading time during flood predictions and warning.

The Study on Analyzing Overflow in River (MIKE FLOOD를 이용한 하천 범람 해석에 관한 연구)

  • Choi, Gye-Woon;Byeon, Seong-June;Chung, Youn-Joong;Kim, Young-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1236-1240
    • /
    • 2006
  • Flooding is an inevitable problem for many cities. The study has depended on a combined approach of physically based modeling and GIS. The stream network is structured by MIKE11 for basis of a network and extended by MIKE21 to make like 2D analysis. This method is called alternative 2D analysis. In this study, one of area in Korea is used to analyze overflow of stream. Flood risk of the area looks like not so big because an elevation of this area is very high and slope is steep, but it is very dangerous area due to the typhoons. The tools to make flood risk map are MIKE11 and MIKE21 include GIS program. And map is expressed 3-D animation with MIKE Animator. As a result of this work, the flood risk map is made. And everyone who is not an expert can check dangerous area for flooding. At present, the method which is viable and easily confirmable must be promote because one of matters of common interest, which is of the general public, is the flood disaster.

  • PDF

Flood Stage Analysis on Vegetated Patterns with River Sites (하천유형별 식생모델의 홍수위 분석)

  • Lee, Jong-Seok;Song, Joong-Geun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.452-460
    • /
    • 2010
  • This study carried out stability evaluation for design flood stage of vegetation models with river sites using 1D HEC-RAS and 2D RMA-2 numerical models. The vegetation models established in this study were divided into which channel reaches consist of urban, rural and mountain rivers with the social and cultural significance of the sites. Examination results from the numerical models showed a similar aspect with the design flood stage of these rivers before vegetation modeling. Also, no embankment overflow was shown from the urban river with additional vegetation density of 25%, although there were approximately 0.20m rising in the flood stage. In case of ural and mountain rivers, vegetation models showed scarce rising in flood stage.

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood) (적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발)

  • An, Hyunuk;Jeong, Anchul;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.853-862
    • /
    • 2018
  • An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.