• Title/Summary/Keyword: 2-D draw bending tests

Search Result 5, Processing Time 0.017 seconds

Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘합금 판재의 고온 스프링백 특성)

  • Choi, S.C.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.60-63
    • /
    • 2007
  • The effect of process parameters on springback of AZ31B magnesium alloy sheet was investigated by performing 2D draw bending test at the elevated temperatures. And also the springback characteristics were studied different blank holding forces between 30 to 250 kgf. Springback was considerably reduced at higher temperatures than $200^{\circ}C$. The blank holding force in the range used, however, had little influence on springback in isothermal tests. For a given temperature, springback decreased with increasing blank holding force in non-isothermal tests.

  • PDF

Springback prediction of friction stir welded DP590 steel sheets considering permanent softening behavior (영구 연화 거동을 고려한 마찰교반용접(FSW) 된 DP강 판재의 탄성 복원 예측)

  • Park, T.;Lee, W.;Chung, K.H.;Kim, J.H.;Kim, D.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.304-307
    • /
    • 2008
  • In order to evaluate the effect of permanent softening behavior on springback prediction, 2D-draw bending simulations were compared with experiments for friction stir welded DP590 steel sheets. To account fur the nonlinear hardening behavior, the combined isotropic-kinematic hardening law was utilized with and without considering the permanent softening behavior during reverse loading. Also, the non-quadratic orthotropic yield function, Yld2000-2d, was used to describe the anisotropic initial-yielding behavior of the base sheet while anisotropic properties of the weld zone were ignored for simplicity.

  • PDF

Springback Prediction of Friction Stir Welded DP590 Steel Sheet Considering Permanent Softening Behavior (영구연화거동을 고려한 마찰교반용접(FSW)된 DP590 강판의 탄성복원 예측)

  • Kim, J.;Lee, W.;Chung, K.H.;Park, T.;Kim, D.G.;Kim, Chong-Min;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2009
  • In order to better predict the springback for friction stir welded DP590 steel sheet, the combined isotropic-kinematic hardening was formulated with considering the permanent softening behavior during reverse loading. As for yield function, the non-quadratic anisotropic yield function, Yld2000-2d, was used under plane stress condition. For the verification purposes, comparisons of simulation and experiments were performed here for the unconstrained cylindrical bending, the 2-D draw bending tests. For two applications, simulations showed good agreements with experiments.

Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law (시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측)

  • Park, T.;Ryou, R.;Lee, M.G.;Chung, K.H.;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.330-333
    • /
    • 2009
  • The time-dependent constitutive law was developed based on viscoelastic-plasticity to describe the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.

  • PDF

Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law (시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측)

  • Park, T.;Ryou, H.;Lee, M.G.;Chung, K.H.;Wagoners, R.H.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.494-499
    • /
    • 2009
  • The time-dependent constitutive law was utilized based on viscoelastic-plasticity to predict the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.