• Title/Summary/Keyword: 2-D analysis

Search Result 15,568, Processing Time 0.052 seconds

3D Face Modeling based on Statistical Model for Animation (애니메이션을 위한 통계적 모델에 기반을 둔 3D 얼굴모델링)

  • Oh, Du-Sik;Kim, Jae-Min;Cho, Seoung-Won;Chung, Sun-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.435-438
    • /
    • 2008
  • 본 논문에서는 애니메이션을 위해서 얼굴의 특징표현(Action Units)의 조합하는 방법으로 얼굴 모델링을 하기 위한 3D대응점(3D dense correspondence)을 찾는 방법을 제시한다. AUs는 표정, 감정, 발음을 나타내는 얼굴의 특징표현으로 통계적 방법인 PCA (Principle Component Analysis)를 이용하여 만들 수 있다. 이를 위해서는 우선 3D 모델상의 대응점을 찾는 것이 필수이다. 2D에서 얼굴의 주요 특징 점은 다양한 알고리즘을 이용하여 찾을 수 있지만 그것만으로 3D상의 얼굴 모델을 표현하기에는 적합하지 않다. 본 논문에서는 3D 얼굴 모델의 대응점을 찾기 위해 원기둥 좌표계 (Cylinderical Coordinates System)을 이용하여 3D 모델을 2D로 투사(Projection)시켜서 만든 2D 이미지간의 워핑(Warping) 을 통한 대응점을 찾아 역으로 3D 모델간의 대응점을 찾는다. 이것은 3D 모델 자체를 변환하는 것보다 적은 연산량으로 계산할 수 있고 본래 형상의 변형이 없다는 장점을 가지고 있다.

  • PDF

A Sensitivity and Performance Analysis for Torque Mode Switching on 2MW Direct Drive Wind Turbine Generator (2MW급 직접구동형 풍력발전기의 풍황 민감도 및 토크모드 스위칭 성능 해석)

  • Rho, Joo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1455-1460
    • /
    • 2014
  • Wind turbine generators were designed on general regulations of wind condition. At real situations, it could be different from the design conditions. There are many control methods and definitions of transient region, because an efficient wind turbine generator control logic is the important matter in generator performance and annual energy production at real conditions. In this document, the power generation sensitivity for wind speed and turbulence intensities was defined to know the sensitive transient region. Wind conditions are applied for the ranges of 7~10m/s mean wind speed and 14~20% turbulence intensity. The sensibility of HR-D86 wind generator was increased in transient region(8~10m/s) on power curve diagram through a torque control to a pitch control. And then GH-bladed simulations was performed for performance analysis of the torque mode switching in transient region on 2MW direct drive wind generator(HR-D86) which is designed IEC class II for onshore. Through the sensitivity and performance analysis, the sensitivity for real wind condition could be the performance index for an wind generator. And the torque mode switching in transient region can increase the mean power generation on HR-D86 wind turbine generator.

Modeling of pile end resistance considering the area of influence around the pile tip

  • Hyodo, Junichi;Shiozaki, Yoshio;Tamari, Yukio;Ozutsumi, Osamu;Ichii, Koji
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2019
  • The finite element method (FEM) is widely used to evaluate the seismic performance of pile-supported buildings. However, there are problems associated with modeling the pile end resistance using the FEM, such as the dependence on the mesh size. This paper proposes a new method of modeling around the pile tip to avoid the mesh size effect in two-dimensional (2D) analyses. Specifically, we consider the area of influence around the pile tip as an artificial constraint on the behavior of the soil. We explain the problems with existing methods of modeling the pile tip. We then conduct a three-dimensional (3D) analysis of a pile in various soil conditions to evaluate the area of influence of the soil around the pile tip. The analysis results show that the normalized area of influence extends approximately 2.5 times the diameter of the pile below the pile tip. Finally, we propose a new method for modeling pile foundations with artificial constraints on the nodal points within the area of influence. The proposed model is expected to be useful in the practical seismic design of pile-supported buildings via a 2D analysis.

A Study on the Application of GIS for Analysis of Subsidence Hazard (지반침하 피해도 분석을 위한 GIS 활용에 관한 연구)

  • 권광수;유명환;박형동
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.557-563
    • /
    • 2000
  • Subsidence hazard has never been considered seriously until recent yews in Korea, although its socioeconomic impact on Korea becomes more and more enormous. There have been a few studies for the application of GIS analysis technique to the prediction of subsidence hazard. For GIS analysis, several factors, which are represented by coverage, are considered and selected for building a GIS model. Numerical method was used to quantify the importance of each factor in GIS model and the result from numerical modeling using FLAC was compared with that from previous research based on empirical methods. Analysis in 3-D needs more computer resources (i.e. memory). Therefore that in 2.5-D was considered to overcome the problem. Not only maximum vertical subsidence but also maximum horizontal strain and maximum slope have been considered for the assessment of subsidence hazard. The model can be easily modified for the purpose of applications in any subsidence area, especially cavern or abandoned mines under thick soil layer.

  • PDF

3D-QSAR Analysis and Molecular Docking of Thiosemicarbazone Analogues as a Potent Tyrosinase Inhibitor

  • Park, Joon-Ho;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1241-1248
    • /
    • 2011
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) between new thiosemicarbazone analogues (1-31) as a substrate molecule and their inhibitory activity against tyrosinase as a receptor were performed and discussed quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods. According to the optimized CoMSIA 2 model obtained from the above procedure, inhibitory activities were mainly dependent upon H-bond acceptor favored field (36.5%) of substrate molecules. The optimized CoMSIA 2 model, with the sensitivity of the perturbation and the prediction, produced by a progressive scrambling analysis was not dependent on chance correlation. From molecular docking studies, it is supposed that the inhibitory activation of the substrate molecules against tyrosinase (PDB code: 1WX2) would not take place via uncompetitive inhibition forming a chelate between copper atoms in the active site of tyrosinase and thiosemicarbazone moieties of the substrate molecules, but via competitive inhibition based on H-bonding.

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF

Earthquake-resistance Analysis of Piles Using Dynamic Winkler Foundation Model (동적 Winkler 보 모델을 이용한 말뚝의 내진해석)

  • 장재후;유지형;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.39-49
    • /
    • 2002
  • This paper describes a numerical method for pile foundation subjected to earthquake loading using dynamic Winkler foundation model. To verify the numerical method, shaking table tests were carried out. In shaking table tests, accelerations and pile bending moments were measured for single pile and pile groups with a spacing-to-diameter ratio of 2.5 under fixed input base acceleration. In numerical analysis, the input base and free field accelerations measured from shaking table tests were used as input base motions. Based on the results obtained, free field acceleration was magnified relative to input base acceleration, whereas pile head accelerations reduced relatively to free field acceleration for soil-pile interaction. Measured and predicted bending moments for both cases have maximum value within the distance 10cm(4d) from the pile top. However, there are some differences between the results of numerical analysis and shake table test below 10cm(4d) from the pile top.

Registration System of 3D Footwear data by Foot Movements (발의 움직임 추적에 의한 3차원 신발모델 정합 시스템)

  • Jung, Da-Un;Seo, Yung-Ho;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.24-34
    • /
    • 2007
  • Application systems that easy to access a information have been developed by IT growth and a human life variation. In this paper, we propose a application system to register a 3D footwear model using a monocular camera. In General, a human motion analysis research to body movement. However, this system research a new method to use a foot movement. This paper present a system process and show experiment results. For projection to 2D foot plane from 3D shoe model data, we construct processes that a foot tracking, a projection expression and pose estimation process. This system divide from a 2D image analysis and a 3D pose estimation. First, for a foot tracking, we propose a method that find fixing point by a foot characteristic, and propose a geometric expression to relate 2D coordinate and 3D coordinate to use a monocular camera without a camera calibration. We make a application system, and measure distance error. Then, we confirmed a registration very well.

Automated measurement and analysis of sidewall roughness using three-dimensional atomic force microscopy

  • Su‑Been Yoo;Seong‑Hun Yun;Ah‑Jin Jo;Sang‑Joon Cho;Haneol Cho;Jun‑Ho Lee;Byoung‑Woon Ahn
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.1.1-1.8
    • /
    • 2022
  • As semiconductor device architecture develops, from planar field-effect transistors (FET) to FinFET and gate-all-around (GAA), there is an increased need to measure 3D structure sidewalls precisely. Here, we present a 3-Dimensional Atomic Force Microscope (3D-AFM), a powerful 3D metrology tool to measure the sidewall roughness (SWR) of vertical and undercut structures. First, we measured three different dies repeatedly to calculate reproducibility in die level. Reproducible results were derived with a relative standard deviation under 2%. Second, we measured 13 different dies, including the center and edge of the wafer, to analyze SWR distribution in wafer level and reliable results were measured. All analysis was performed using a novel algorithm, including auto fattening, sidewall detection, and SWR calculation. In addition, SWR automatic analysis software was implemented to reduce analysis time and to provide standard analysis. The results suggest that our 3D-AFM, based on the tilted Z scanner, will enable an advanced methodology for automated 3D measurement and analysis.