• Title/Summary/Keyword: 2-D Stefan problems

Search Result 1, Processing Time 0.017 seconds

Moving Least Squares Difference Method for the Analysis of 2-D Melting Problem (2차원 융해문제의 해석을 위한 이동최소제곱 차분법)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2013
  • This paper develops a 2-D moving least squares(MLS) difference method for Stefan problem by extending the 1-D version of the conventional method. Unlike to 1-D interfacial modeling, the complex topology change in 2-D domain due to arbitrarily moving boundary is successfully modelled. The MLS derivative approximation that drives the kinetics of moving boundary is derived while the strong merit of MLS Difference Method that utilizes only nodal computation is effectively conserved. The governing equations are differentiated by an implicit scheme for achieving numerical stability and the moving boundary is updated by an explicit scheme for maximizing numerical efficiency. Numerical experiments prove that the MLS Difference Method shows very good accuracy and efficiency in solving complex 2-D Stefan problems.