• Title/Summary/Keyword: 2-D Numerical Modeling

Search Result 362, Processing Time 0.029 seconds

Field Observation and Quasi-3D Numerical Modeling of Coastal Hydrodynamic Response to Submerged Structures

  • Yejin Hwang;Kideok Do;Inho Kim;Sungyeol Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.68-79
    • /
    • 2023
  • Even though submerged breakwater reduces incident wave energy, it redistributes the coastal area's wave-induced current, sediment transport, and morphological change. This study examines the coastal hydrodynamics and the morphological response of a wave-dominated beach with submerged breakwaters installed through field observation and quasi-3D numerical modeling. The pre-and post-storm bathymetry, water level, and offshore wave under storm forcing were collected in Bongpo Beach on the East coast of Korea and used to analyze the coastal hydrodynamic response. Four vertically equidistant layers were used in the numerical simulation, and the wave-induced current was examined using quasi-3D numerical modeling. The shore normal incident wave (east-northeast) generated strong cross-shore and longshore currents toward the hinterland of the submerged breakwater. However, the oblique incident wave (east-southeast) induced the southeastward longshore current and the sedimentation in the northeast area of the beach. The results suggested that the incident wave direction is a significant factor in determining the current and sediment transport patterns in the presence of the submerged breakwaters. Moreover, the quasi-3D numerical modeling is more appropriate for estimating the wave transformation, current, and sediment transport pattern in the coastal area with the submerged breakwater.

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

Numerical Modeling of Perturbation Effects of Electrostatic Probe into 2D ICP(inductively coupled plasma) (2D-ICP(inductively coupled plasma)에서 정전 탐침 삽입 시의 플라즈마 수치 계산)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • Numerical modeling is used to investigate the perturbation of a single Langmuir probe (0.2 mm diameter shielded with 6 mm insulator) inserted along the center axis of a cylindrical inductively coupled plasma chamber filled with Ar at 10 mTorr and driven by 13 MHz. The probe was driven by a sine wave. When the probe tip is close to a substrate by 24.5 mm, the probe characteristics was unperturbed. At 10 mm above the substrate, the time averaged electric potential distribution around the tip was severly distorted making a normal probe analysis impossible.

A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code (입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구)

  • You, Kwang Ho;Lee, Chang Su;Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

2D numerical modeling of icebreaker advancing in ice-covered water

  • Sawamura, Junji
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.385-392
    • /
    • 2018
  • This paper presents 2D numerical modeling to calculate ship-ice interactions that occur when an icebreaker advances into ice-covered water. The numerical model calculates repeated icebreaking of an ice plate and removal of small ice floes. The icebreaking of the ice plate is calculated using a ship-ice contact detection technique and fluid-structural interaction of ice plate bending behavior. The ship-ice interactions in small ice floes are calculated using a physically based modeling with 3DOF rigid body equations. The ice plate is broken in crushing, bending, and splitting mode. The ice floes drift by wind or current and by the force induced by the ship-ice interaction. The time history of ice force and ice floe distribution when an icebreaker advances into the ice-covered water are obtained numerically. Numerical results demonstrate that the time history of ice force and distribution of ice floes (ice channel width) depend on the ice floe size, ship motion and ice drifting by wind or current. It is shown that the numerical model of ship maneuvering in realistic ice conditions is necessary to obtain precise information about the ship in ice-covered water. The proposed numerical model can be useful to provide data of a ship operating in ice-covered water.

Numerical Modeling of an Inductively Coupled Plasma Based Remote Source for a Low Damage Etch Back System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.169-178
    • /
    • 2014
  • Fluid model based numerical analysis is done to simulate a low damage etch back system for 20 nm scale semiconductor fabrication. Etch back should be done conformally with very high material selectivity. One possible mechanism is three steps: reactive radical generation, adsorption and thermal desorption. In this study, plasma generation and transport steps are analyzed by a commercial plasma modeling software package, CFD-ACE+. Ar + $CF_4$ ICP was used as a model and the effect of reactive gas inlet position was investigated in 2D and 3D. At 200~300 mTorr of gas pressure, separated gas inlet scheme is analyzed to work well and generated higher density of F and $F_2$ radicals in the lower chamber region while suppressing ions reach to the wafer by a double layer conducting barrier.

Development of optimum modeling approach in prediction of wheelflats effects on railway forces

  • Sadeghi, Javad;Khajehdezfuly, Amin;Esmaeili, Morteza;Poorveis, Davood
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.499-509
    • /
    • 2019
  • While the wheel flat is an asymmetrical phenomenon in the railway, majority of researches have used two-dimensional models in the investigation of the effect of wheel flat on the wheel rail forces. This is due to the considerably low computational costs of two dimensional (2D) models although their reliability is questionable. This leaves us with the question of "what is the optimum modeling technique?". It is addressed in this research. For this purpose, two and three dimensional numerical models of railway vehicle/track interaction were developed. The three dimensional (3D) model was validated by comparisons of its results with those obtained from a comprehensive field tests carried out in this research and then, the results obtained from the 2D and 3D models were compared. The results obtained indicate that there are considerable differences between wheel/rail forces obtained from the 2D and 3D models in the conditions of medium to large wheel-flats. On the other hand, it was shown that the results of the 2D models are reliable for particular ranges of vehicle speed, railway track stiffness and wheel-fats lengths and depths. The results were used to draw a diagram, which presents the optimum modeling technique, compromising between the costs and accuracy of the obtained results.

Estimating the Amounts of Long-term Cohesive Sediment Deposition in Two Tide-dominated Bays of South Korea: Numerical Study (조석으로 인한 만 내 점착성 부유사 퇴적량 추정 : 수치해석)

  • Kang, Min Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, a two-dimensional hydrodynamic and sediment transport modeling system, HSCTM-2D is employed to simulate the amounts of long-term cohesive sediment deposition in two study bays, and its applicability is evaluated. The modeling system's two modules for hydrodynamic modeling and sediment transport modeling are calibrated, comparing the simulated results and the observed tidal levels, tidal current velocities, and suspended sediment concentrations in the Asan and the Cheonsu Bays, South Korea. It is found that there are good agreements between the simulation results and the observed values. The amounts of long-term cohesive sediment deposition of the two study bays are estimated using the modeling system, taking the suspended sediment concentrations from the open ocean in the tide-dominated environment into account. And, in the case of the Asan Bay, the annual deposition rate reaches 8.1 cm/yr; the Cheonsu Bay, 14.5 cm/yr. Overall, it is concluded that the modeling system is useful to understand the physical process of cohesive suspended sediment transport and deposition in tidal water bodies and to establish the mitigation strategy.

Numerical Simulation of Fracture Mechanism by Blasting using PFC2D (PFC2D에서의 발파에 의한 파괴 메커니즘의 수치적 모델링)

  • Jong, Yong-Hun;Lee, Chung-In;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.476-485
    • /
    • 2006
  • During blasting, both shock wave and gas are generated in detonation process of explosives and the generated wave and gas expansion may create new fractures and damage rock mass. In order to explain and understand completely the fracture mechanism by blasting, we have to consider both effects of the wave and gas expansion simultaneously. In this study, we use a discrete element code, PFC2D and develop an algorithm which is capable of modeling both detonation and gas pressures acting on blasthole wall and visualizing generated cracks within rock mass. Moreover, the gas-pressure modeling method which applies a corresponding external force of gas pressure to parent particles of radial fractures is adopted to simulate a coopting between rock mass and gas penetrating created radial fractures. The developed algorithm is verified by reproducing numerical simulations of a lab-scale test blast successfully.