• Title/Summary/Keyword: 2-D Field Analysis

Search Result 1,532, Processing Time 0.028 seconds

2-D Field Analysis of Flat-type Motor (평판형 전동기의 2차원 자계 해석에 관한 연구)

  • Kim, Pill-Soo
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.160-165
    • /
    • 1998
  • This paper describes a method for field analysis inside the flat-type brushless DC motor using 2-D field simulator. Rigorous field analysis entail 3-D analysis. However, this analysis is not often appropriate for system designs because of the time and cost involved. For field analysis in this study, the 3-D problem is reduced to a 2-D boundary value problem by introducing a cylindrical cutting plane at the mean radius of the magnets. Independent of sizes and shapes of systems, the exact 2-D field results can be obtained with reasonable predictability.

  • PDF

Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법)

  • Cho, Young Kyo;Seok, Jong Hwan;Choi, Lyn;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.

Study on the characteristics of magnetic field distribution in AC superconducting generator using normalized data

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.216-220
    • /
    • 2000
  • AC Superconducting Generators (ACSG) are featured by 3D magnetic flux distribution, which decreases in the direction of axis. For this reason, when ACSG is optimal designed, 3D magnetic field analysis is required. This paper proposes 2D Finite Element Analysis (FEA) results normalized by 3D FEA according to the position of armature coil and the ratio of field coil width to axial length in order to reduce the analysis time. By using the proposed data, the reasonable 3D FEA results of ACSG can be only predicted by 2D FEA results. The validity of the 3D FEA results is verified by comparison with the experimental results of 30kVA superconducting synchronous generator.

  • PDF

Quasi-3D analysis of Axial Flux Permanent Magnet Rotating Machines using Space Harmonic Methods (공간고조파법을 이용한 축 자속 영구자석 회전기기의 준(準)-3D 특성 해석)

  • Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.942-948
    • /
    • 2011
  • This paper deals with characteristic analysis of axial flux permanent magnet (AFPM) machines with axially magnetized PM rotor using quasi-3-D analysis modeling. On the basis of magnetic vector potential and a two-dimensional (2-D) polar-coordinate system, the magnetic field solutions due to various PM rotors are obtained. In particular, 3-D problem, that is, the reduction of magnetic fields near outer and inner radius of the PM is solved by introducing a special function for radial position. And then, the analytical solutions for back-emf and torque are also derived from magnetic field solutions. The predictions are shown in good agreement with those obtained from 3-D finite element analyses (FEA). Finally, it can be judged that analytical solutions for electromagnetic quantities presented in this paper are very useful for the AFPM machines in terms of following items : initial design, sensitivity analysis with design parameters, and estimation of control parameters.

Analysis of Cogging Torque in Interior Permanent Magnet Motor by Analytical Method

  • Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with magnetic field analysis and computation of cogging torque using an analytical method in Interior Permanent Magnet Motor (IPMM). The magnetic field is analyzed by solving space harmonics field analysis due to magnetizing and the cogging torque is analyzed by combining field analysis with relative permeance. In reducing cogging torque, the inferences of various design variable and magnetizing distribution are investigated. It is shown that the slot and pole ratio (the pole-arc / pole-pitch ratio) combination has a significant effect on the cogging torque and presents a optimal flux barrier shape to reduce the cogging torque. The validity of the proposed technique is confirmed with 2-D Finite Element(FE) analysis.

3D-QSAR Analysis on Antidepressant Activity of Tricyclic Isoxazole Analogues against Medetomidine-induced Loss of Righting (Medetomidine에 유발된 정좌반사소실에 대한 Tricyclic Isoxazole 유도체들의 항우울성에 관한 3D-QSAR 분석)

  • Choi, Min-Sung;Sung, Nack-Do;Myung, Pyung-Keun
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.98-105
    • /
    • 2011
  • To search the minimum structural requirement of tricyclic isoxazole analogues (1~30) as new class potent antidepressant, thee-dimensional quanti- tative-structure relationship (3D-QSAR) models between substituents ($R_1{\sim}R_5$) of tricyclic isoxazoles and their antidepressant activity against medetomidine-induced loss of righting were performed and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indies analysis (CoMSIA) methods. The correlativity and predictability ($r^2$=0.484 and $q^2$=0.947) of CoMSIA-2 model were higher than those of the rest models. The inhibitory activity against medetomidine-induced loss of righting was dependent on electrostatic field (43.4%), hydrophobic field (35.3%), and steric field (21.2%) of tricyclic isoxazoles. From the CoMSIA-2 contour maps, it is predicted that the antidepressant activity of potent antidepressants against medetomidine-induced loss of righting will be able to increase by the substituents ($R_1{\sim}R_5$) which were in accord with CoMSIA field.

Measurement Guideline of Fresnel-Field Antenna Measurement Method

  • Oh, Soon-Soo;Moon, Jung-Ick
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.68-70
    • /
    • 2009
  • In this letter, a parametric analysis of the Fresnel-field antenna measurement method is performed for a square aperture. As a result, the optimum number of Fresnel fields for one far-field point is guided as $M_{opt}=N_{opt}=D^2/{\lambda}R+5$, where D is the antenna diameter, ${\lambda}$ is the wavelength, and R is the distance between the source antenna and the antenna under test. For the aperture size 5 ${\leq}$ $L_x/{\lambda}$ ${\leq}$ 20, the tolerable distances for gain errors of 0.5 dB and 0.2 dB can be guided as $R_{0.5\;dB}$ ${\approx}$ $1.2Lx/{\lambda}$ and $R_{0.2\;dB}$ ${\approx}$ $2.0L_x/{\lambda}$, where $L_x$ is the lateral length of the square aperture. The tolerable distances for 20 ${\leq}$ $L_x/{\lambda}$ ${\leq}$ 200 are also proposed. This measurement guideline can be fully utilized when performing the Fresnel-field antenna measurement method.

  • PDF

Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads

  • Zhou, C.E.;Vecchio, F.J.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.455-479
    • /
    • 2005
  • This paper describes a 2D nonlinear finite element analysis (NLFEA) platform that combines heat flow analysis with realistic analysis of cracked reinforced concrete structures. The behavior models included in the structural analysis are mainly based on the Modified Compression Field Theory and the Distributed Stress Field Model. The heat flow analysis takes into account time-varying thermal loads and temperature-dependent material properties. The capability of 2D nonlinear transient thermal analysis is then implemented into a nonlinear finite element analysis program VecTor2(C) for 2D reinforced concrete membranes. Analyses of four numerical examples are performed using VecTor2, and results obtained indicate that the suggested nonlinear finite element analysis procedure is capable of modeling the complete response of a concrete structure to thermal and mechanical loads.

A Study of Magnetic Field Characteristic of Field coil in HTS motor (HTS 전동기용 계자코일의 자장 특성 연구)

  • 이정종;조영식;홍정표;손명환;김석환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.47-51
    • /
    • 2002
  • In this paper, flux distribution and operating current is calculated according to the field coil change in HTS(High Temperature Superconducting) motor. In order to calculate magnetic field characteristic of the field coil. it is computed by changing the outer radius and the inner width of field coil Bio-Savart equation is used as the analysis method for the characteristic analysis of magnet. 2D and 3D FEA(Finite Element Analysis) is used for the magnetic field distribution in HTS motor The operating current is calculated by $B{\bot}$ linked With the field coil and $I_c-B curve of superconductor.

Eddy current loss calculation of flux shield in the large turbo generator using axi-periodic analysis (Axi-periodic Analysis를 이용한 대형 터보 발전기 단부 Flux Shield의 Eddy Current Loss 산정)

  • Kwon, Soon-O;Lee, Jung-Jong;Hong, Jung-Pyo;Nam, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.987-989
    • /
    • 2005
  • Axi-periodic analysis using magnetic vector potential is formulated in time harmonic field and applied to the field analysis for the end region of large turbo generator in this paper. By using axi-periodic analysis, the effect of flux shield, one of the structure placed in the end region of large turbo generator to prevent stator end from thermal damage, is studied, and eddy current loss in the flux shield is estimated for operation conditions. 3D FEA is used for the verification of presented analysis method. Because 3D flux distribution can be calculated with 2D modeling, magnetic field showing 3D distribution can be effectively calculated by axi-periodic analysis comparing with 3D FEA.

  • PDF