• 제목/요약/키워드: 2-D C-D Nozzle

검색결과 64건 처리시간 0.024초

볼록한 표면위에 분사되는 원형경사충돌제트의 국소열전달계수 측정에 관한 연구 (Measurement of the local heat transfer coefficient on a convex hemispherical surface with round oblique impinging jet)

  • 최형철;이세균;이상훈;임경빈
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.846-854
    • /
    • 1999
  • Measurements of the local heat transfer coefficients were made on a hemispherically convex surface with a round oblique impinging jet. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23000 and the nozzle-to-surface distance was L/d=2, 4, 6, 8, and 10 and the jet angle was $\alpha$=$0^{\circ}\; 15^{\circ}\;30^{\circ}C\; and \;40^{\circ}C$. In the experiment, the Nusselt number at the stagnation point decreases as the jet angle increases and has the maximum value for L/d=6. The X-axis Nusselt number distributions exhibit Secondary maxima at $0^{\circ}C\re $\alpha$\re 15^{\circ}C, L/d\le6$ for X/d<0(upstream) and at $0^{\circ}C\re $\alpha$40^{\circ}C,\;L/d\le4\;and\; at\; 30^{\circ}C\re $\alpha$$\leq$40^{\circ}C,\;L/d\le 6 $for X/d>0(downstream). The secondary maxima occurs at long distance from the stagnation point as the jet angle increases or the nozzle-to-surface distance decreases. The Y-axis Nusselt number distributions exhibit secondary maxima at Y/d=$\pm$2 for $0^{\circ}C\le a\le30^{\circ}C\; and\; L/d\le4, and \;for\;$\alpha$=40^{\circ}C$and L/d=2. The displacement of the maximum Nusselt number from the stagnation point increases as the jet angle increases or the nozzle-to-surface distance decreases and the maximum distance is about 0.67 times of the nozzle diameter. The ratio of the maximum Nusselt number to the stagnation Nusselt number increases as the jet angle increases.

  • PDF

소규모영농에 적합한 가축분뇨액비살비살포기 개발 (Development of Animal Liquid Manure Field Spreader Suited to Small Scale Crop Production Farms)

  • 최광재;오권영;유병기;이성현
    • 한국축산시설환경학회지
    • /
    • 제12권3호
    • /
    • pp.151-160
    • /
    • 2006
  • For even distribution of liquid manure in the field, a boom nozzle type spreader was designed and studied to determined its suitability for small scale crop production farms. Boom nozzle type spreader was compared in the impact triple nozzle and impact single nozzle type spreader. Spreading uniformity of the boom nozzle type liquid manure spreader showed 5.2% (C.V.) and impact single nozzle type spreader showed 6.9% (C.V.). The spreading uniformity of the impact triple nozzle type spreader was quite uneven, therefore, the spreader could be modified as twin nozzle for spreading in orchard farm. The wheel axle height adjustable type liquid manure spreader has higher the stability and it considered much useful on the hilly agricultural land.

  • PDF

다공 디젤노즐의 홀수 변화에 따른 우량계수 평가에 관한 연구 (A Study on Estimate of Flow Coefficient with Variation of Hole Number in Multi-hole Diesel Nozzle)

  • 이지근;조원일;노병준
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.59-66
    • /
    • 2001
  • This experimental study is to investigate the flow characteristics of the multi-hole nozzle used in the fuel injection system of a heavy-duty diesel engine. A multi-hole diesel nozzle with a 2-spring nozzle holder was used in this study and without changing the total orifice exit area, its hole number varied from 3($d_n$=0.42mm) to 8($d_n$=0.25mm). The injection pressure and needle lift were measured and Bosch type injection rates measurement system was used. The discharge flowrates of each orifice in the multi-hole nozzle changed by the flow conditions inside the nozzle sac hole. In case that pump speed and injection quantity were low, the orifice located in the vertex of nozzle tip had a great deal of injection quantity compared with that of others. As the increment of multi-hole number, the injection duration and the mean injection pressure decrease. The mean and peak injection rates, however, increase. Actually, the mean flow coefficient(${C_d}_{(mean)}$) increases, too. The flow coefficient of the multi 8 hole was evaluated as Cd(mean)=0.74 and that is the maximum value among the examined conditions.

  • PDF

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

지하구 미분무수 소화설비 적용에 관한 연구 (An Application of the Water Mist System for Underground Utility Tunnel)

  • 김운형;김종훈;박승민;김태수;민인홍;전동일;김상욱
    • 한국화재소방학회논문지
    • /
    • 제16권1호
    • /
    • pp.66-76
    • /
    • 2002
  • 본 연구는 지하구 미분무수 소화설비 적용에 관한 것으로, 화재 초기에 신속한 소화를 통한 케이블 열적손상의 최소화와 신속한 본래 기능의 회복을 위한 소화 시스템의 최적화에 그 목적이 있으며, 이를 위해 미분무수 노즐개발을 위한 화재실험을 수행하였다. 실험은 2.5m(H)$\times$2.5m(W)$\times$25m(D)의 콘크리트 지하구에서 소화설비가 작동되지 않는 경우와 2가지 종류의 미분무수노즐이 적용되는 경우를 수행하였다. 실험 결과 소화설비의 개입이 없는 경우, 2분 이내에 열적 변형에 의한 치명적인 손상을 입었으며, 2~3분 경과 후 케이블의 내부까지 손상되었다. 노즐적용실험의 결과, 타입 1(입자분포 약 470$\mu{m}$)노즐과 타입 2(입자분포 약 650$\mu{m}$) 노즐은 모두 케이블의 피해 온도제어($4000^{\circ}c$ 이하)를 만족하였다. 실험을 통하여 지하구 공간특성에 적합한 미분무수 헤드의 특성을 설정할 수 있었으며, 그 성능을 입증할 수 있었다.

온도구배를 갖는 평판에 대한 원형 충돌제트의 열전달 및 난류유동에 관한 실험적 연구 (An experimental study on the heat transfer and turbulent flow of round jet impinging the plate with temperature gradient)

  • 한충호;이계복;이충구
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.855-860
    • /
    • 1999
  • An experimental study of jet impingement on the surface with linear temperature gradient is conducted with the presentation of the turbulent characteristics and the heat transfer rates measured when this jet impinges normally to a flat plate. The jet Reynolds number ranges from 30,000 to 90,000, the temperature gradient of the plate is 2~$4.2^{\circ}C$/cm and the dimensionless nozzle to plate distance(H/D) is from 6 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter(H/D) is 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number and the dimensionless nozzle to plate distance(H/D). It has been found that the heat transfer rate increases with increasing turbulent intensity.

  • PDF

Intermittent Atomization Characteristics of Multi-Hole and Single-Hole Diesel Nozzle

  • Lee, Jeekuen;Kang, Shin-Jae;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1693-1701
    • /
    • 2002
  • The intermittent spray characteristics of a multi-hole and a single-hole diesel nozzle were experimentally investigated. The hole number of the multi-hole nozzle was 5, and the hole diameter of the 5-hole and the single-hole nozzle was the same as d$\_$n/=0.32 ㎜ with the constant hole length to diameter ratio(l$\_$n//d$\_$n/=2.81). The droplet diameters of the spray, including the time-resolved droplet diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) , injected intermittently from the two nozzles into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer). Through the time-resolved evolutions of the droplet diameter, it was found that the structure of the multi-hole and the single-hole nozzle spray consisted of the three main parts : (a) the leading edge affected by surrounding air. and composed of small droplets; (b) the central part surrounded by the leading edge and mixing flow region and scarcely affected by the resistance of air, (c) the trailing edge formed by the passage of the central part. The SMD decreases gradually with the increase in the radial distance, and the constant value is obtained at the outer region of the radial distance (normalized by hole diameter) of 7-8 and 6 for the 5-hole and single-hole nozzle, respectively. The SMD along the centerline of the spray decrease shapely with the increase in the axial distance after showing the maximum value near the nozzle tip. The SMD remains the constant value near the axial distance(normalized by hole diameter) of 150 and 180 for the 5-hole and the single-hole nozzle, respectively.

중력방향과 대향류인 저속 원형노즐제트 충돌에 의한 일정 두께 하향 등온원형평판에서의 열전달 현상 (The Study of Heat Transfer on a Isothermal Circular Surface by an Impinging, Circular Water Jets with the Low Velocity Against the Direction of Gravity)

  • 엄용균
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.449-458
    • /
    • 2014
  • The heat transfer phenomenon was investigated in this study when a single round water jet with the low velocity and against the direction of gravity flows to the downward facing Isothermal of definite thickness circular plate. Experimental investigation is performed for a single round jet diameter 4mm, 6mm, and 8mm with the jet velocity 2.4m/s and jet fluid temperature of $24^{\circ}C$, varied the ratio of nozzle clearance/nozzle diameter (H/D)1, 2, 3, 6, and 8, on circular plate isothermal condition with $85^{\circ}C$. The local convection heat transfer coefficient distributions are analyzed based on the visualization of jet flow field. The effects of the diameter of Nozzle, the ratio of H/D and the ratio of nozzle diameter/circular plate diameter on heat transfer phenomenon are investigated. As a results of experiment is obtained correlation equation, $Nu_r=3.18Re_r^{0.55}Pr_r^{0.4}$.

충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響)[3] : rod직경변화(直徑燮化)에 대한효과(效果) (Heat Transfer Augmentation on Flat Plate with Two-Dimensional Rods in Impinging Air Jet System [3] : Effect of Rod Diameter)

  • 김동춘;이용화;서정윤
    • 설비공학논문집
    • /
    • 제2권4호
    • /
    • pp.295-302
    • /
    • 1990
  • The purpose of this study is augmentation of heat transfer without additional power in two-dimensional impinging air jet. The technique of heat transfer augmentation used in this experiment is to place rod bundles in front of the flat heated surface. The effects of rod diameter, nozzle-to-target plate distance and the nozzle exit velocity on heat transfer have been investigated. The main conclusions obtained from this experiment are as follows. High heat transfer augmentation is achieved by means of flow acceleration and thinning of boundary layer by placing rod bundles in front of the flat plate. Average heat transfer coefficient becomes maximum in the case of H/B=10,D=4mm. For H/B=2,D=4mm, maximum heat transfer augmentation has been determined to be about 1.5 times larger than that of the flat plate. Heat transfer augmentation by placing the rod bundles at 12m/s is to be about 2 times more than increasing nozzle exit velocity from 12m/s to 18m/s.

  • PDF

비균일 온도분포를 갖는 평판에 대한 충돌제트의 열전달 및 난류유동특성에 관한 연구 (Experimental Study on the Heat Transfer and Turbulent Flow Characteristics of Jet Impinging the Non-isothermal Heating Plate)

  • 한충호;이계복;이충구;이창우
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.272-277
    • /
    • 2001
  • 선형온도구배를 갖는 비균일 가열표면에 대한 충돌 제트의 난류유동장과 열전달 특성을 실험을 통해 연구하였다. 제트의 레이놀즈수와 가열판의 온도구배, 그리고 노즐 출구로부터 가열판가지의 거리를 변화시키며 실험을 수행하였다. 최대 열전달은 정체점에서 나타나고 정체점으로부터 벽면방향으로 거리가 증가함에 따라 열전달률은 감소한다. 벽면가지의 거리가 크지 않은 경우는 난류의 영향으로 열전달의 제2정점이 나타난다. 최대 열전달은 노즐과 가열판 사이의 거리가 노즐 직경의 6에서 8배 정도일 때 나타난다. 열전달률의 상관식을 프란틀수와 레이놀즈수, 노즐과 가열판사이의 거리와 직경비 그리고 온도구배의 지수승의 함수로 구하였다. 열전달률과 난류유동장의 관계를 실험을 통해 확인하였다. 벽면제트는 온도구배의 의해 영향을 받았고 벽면거리가 증가할수록 더 크게 나타났다.

  • PDF