• Title/Summary/Keyword: 2-Banach spaces

Search Result 254, Processing Time 0.023 seconds

APPROXIMATION OF CAUCHY ADDITIVE MAPPINGS

  • Roh, Jai-Ok;Shin, Hui-Joung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.851-860
    • /
    • 2007
  • In this paper, we prove that a function satisfying the following inequality $${\parallel}f(x)+2f(y)+2f(z){\parallel}{\leq}{\parallel}2f(\frac{x}{2}+y+z){\parallel}+{\epsilon}({\parallel}x{\parallel}^r{\cdot}{\parallel}y{\parallel}^r{\cdot}{\parallel}z{\parallel}^r)$$ for all x, y, z ${\in}$ X and for $\epsilon{\geq}0$, is Cauchy additive. Moreover, we will investigate for the stability in Banach spaces.

CONVERGENCE OF THE RELAXED NEWTON'S METHOD

  • Argyros, Ioannis Konstantinos;Gutierrez, Jose Manuel;Magrenan, Angel Alberto;Romero, Natalia
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.137-162
    • /
    • 2014
  • In this work we study the local and semilocal convergence of the relaxed Newton's method, that is Newton's method with a relaxation parameter 0 < ${\lambda}$ < 2. We give a Kantorovich-like theorem that can be applied for operators defined between two Banach spaces. In fact, we obtain the recurrent sequence that majorizes the one given by the method and we characterize its convergence by a result that involves the relaxation parameter ${\lambda}$. We use a new technique that allows us on the one hand to generalize and on the other hand to extend the applicability of the result given initially by Kantorovich for ${\lambda}=1$.

CONVERGENCE THEOREMS FOR TWO FAMILIES OF WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND A FAMILY OF EQUILIBRIUM PROBLEMS

  • Zhang, Xin;Su, Yongfu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.583-607
    • /
    • 2010
  • The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616?5628] and some other papers.

INTEGRAL OPERATORS FOR OPERATOR VALUED MEASURES

  • Park, Jae-Myung
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.331-336
    • /
    • 1994
  • Let $P_{0}$ be a $\delta$-ring (a ring closed with respect to the forming of countable intersections) of subsets of a nonempty set $\Omega$. Let X and Y be Banach spaces and L(X, Y) the Banach space of all bounded linear operators from X to Y. A set function m : $P_{0}$ longrightarrow L(X, Y) is called an operator valued measure countably additive in the strong operator topology if for every x $\epsilon$ X the set function E longrightarrow m(E)x is a countably additive vector measure. From now on, m will denote an operator valued measure countably additive in the strong operator topology.(omitted)

  • PDF

FUZZY STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION WITH THE FIXED POINT ALTERNATIVE

  • SEO, JEONG PIL;LEE, SUNGJIN;SAADATI, REZA
    • The Pure and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.285-298
    • /
    • 2015
  • In [41], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed positive integer l holds for all x1, ⋯ , x2l ∈ V . For the above equality, we can define the following functional equation Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach spaces.

QUADRATIC MAPPINGS ASSOCIATED WITH INNER PRODUCT SPACES

  • Lee, Sung Jin
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $${\sum_{i=1}^{n}}\left\|x_i-{\frac{1}{n}}{\sum_{j=1}^{n}}x_j \right\|^2={\sum_{i=1}^{n}}{\parallel}x_i{\parallel}^2-n\left\|{\frac{1}{n}}{\sum_{i=1}^{n}}x_i \right\|^2$$ holds for all $x_1$, ${\cdots}$, $x_n{\in}V$. Let V, W be real vector spaces. It is shown that if an even mapping $f:V{\rightarrow}W$ satisfies $$(0.1)\;{\sum_{i=1}^{2n}f}\(x_i-{\frac{1}{2n}}{\sum_{j=1}^{2n}}x_j\)={\sum_{i=1}^{2n}}f(x_i)-2nf\({\frac{1}{2n}}{\sum_{i=1}^{2n}}x_i\)$$ for all $x_1$, ${\cdots}$, $x_{2n}{\in}V$, then the even mapping $f:V{\rightarrow}W$ is quadratic. Furthermore, we prove the generalized Hyers-Ulam stability of the quadratic functional equation (0.1) in Banach spaces.

FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

  • Park, Choonkil;Huh, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.455-466
    • /
    • 2008
  • In, [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\left\|{\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i{\left\|^2+{\sum\limits_{i=1}^{n}}\right\|}{x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}x_j}}\right\|^2}={\sum\limits_{i=1}^{n}}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\cdots},x_{n}{\in}V$. Let V,W be real vector spaces. It is shown that if a mapping $f:V{\rightarrow}W$ satisfies $$(0.1){\hspace{10}}nf{\left({\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i \right)}+{\sum\limits_{i=1}^{n}}f{\left({x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}}x_i}\right)}\\{\hspace{140}}={\sum\limits_{i=1}^{n}}f(x_i)$$ for all $x_1$, ${\dots}$, $x_{n}{\in}V$ $$(0.2){\hspace{10}}2f\(\frac{x+y}{2}\)+f\(\frac{x-y}{2} \)+f\(\frac{y}{2}-x\)\\{\hspace{185}}=f(x)+f(y)$$ for all $x,y{\in}V$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

  • PDF

FRACTIONAL NONLOCAL INTEGRODIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL IN BANACH SPACES

  • Wang, Jinrong;Wei, W.;Yang, Y.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.79-91
    • /
    • 2010
  • In this paper, a class of fractional integrodifferential equations of mixed type with nonlocal conditions is considered. First, using contraction mapping principle and Krasnoselskii's fixed point theorem via Gronwall's inequailty, the existence and uniqueness of mild solution are given. Second, the existence of optimal pairs of systems governed by fractional integrodifferential equations of mixed type with nonlocal conditions is also presented.

AN ADDITIVE FUNCTIONAL INEQUALITY

  • Lee, Sung Jin;Park, Choonkil;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.317-323
    • /
    • 2014
  • In this paper, we solve the additive functional inequality $${\parallel}f(x)+f(y)+f(z){\parallel}{\leq}{\parallel}{\rho}f(s(x+y+z)){\parallel}$$, where s is a nonzero real number and ${\rho}$ is a real number with ${\mid}{\rho}{\mid}$ < 3. Moreover, we prove the Hyers-Ulam stability of the above additive functional inequality in Banach spaces.

WEAK AND STRONG CONVERGENCE OF THREE STEP ITERATION SCHEME WITH ERRORS FOR NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Jeong, Jae Ug;Kwun, Young Chel
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.235-252
    • /
    • 2014
  • In this paper, weak and strong convergence theorems of three step iteration process with errors are established for two weakly inward and non-self asymptotically nonexpansive mappings in Banach spaces. The results obtained in this paper extend and improve the several recent results in this area.