• Title/Summary/Keyword: 2-Aryl-2-methyl-2

Search Result 51, Processing Time 0.015 seconds

Theoretical Studies on the Progonation Equilibria of Benzoyl Derivatives

  • Kim, Wang Gi;Kim, Yong Bin;Kim, Chang Gon;Lee, Bon Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.395-400
    • /
    • 2001
  • The effects of ortho- (R = H and CH3) and Y-substituents (Y = OCH3, CH3H and CN), which are directly attached to the carbonyl carbon, on the protonation equilibria of the para-X-substituted benzoyl derivatives, 4-X -2, 6-di-R-C6H2-C(=O)-Y, are investigated theoretically using the B3LYP method with 6-31+G* basis set. Structurally, both of the (B) and (BH+ ) forms in the species with R = H are nearly coplanar regardless of the Y-substituents implying that the steric repulsion between Y-substituent and R = H is relatively small. In the species with R = CH3 , the tortional angle (Θ) between the carbonyl moiety and aryl ring varies from zero to near right angle depending on the degree of steric repulsion between Y and R = CH3 and the resonance demand. However the reaction energies, ΔG°, for the protonation processes are more favorable for R = CH3 than for R = H due to stronger electron donating effect of R = CH3 , although the species with R = CH3 are unfavorable sterically. On the other hand, the Hammett type plots are progressively better correlated with б+ than with б values on going from Y = OCH3 to Y = CN for both species with R = H and CH3 indicating that the degree of resonance delocalization between carbonyl moiety and X-substituent is increased for a more electron accepting Y-substituent. Nevertheless the effects of R = CH3 on the magnitude of Hammett type reaction constants ( б or б+ ) are not much different from those of R = H.