• Title/Summary/Keyword: 2-2 cement based

Search Result 671, Processing Time 0.024 seconds

Effects of Carbonation on the Microstructure of Cement Materials: Influence of Measuring Methods and of Types of Cement

  • Pham, Son Tung;Prince, William
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • The objective of this work was to examine the influence of carbonation on the microstructure of cement materials. Different materials, which were CEM I mortar and paste, CEM II mortar and paste, were carbonated at $20^{\circ}C$, 65 % relative humidity and 20 % of $CO_2$ concentration. The specific surface area and pore size distribution were determined from two methods: nitrogen adsorption and water adsorption. The results showed that: (1) nitrogen adsorption and water adsorption do not cover the same porous domains and thus, we observed conflicts in the results obtained by these two techniques; (2) the CEM II based materials seemed to be more sensible to a creation of mesoporosity after carbonation than the CEM I based materials. The results of this study also helped to explain why observations in the literature diverge greatly on the influence of carbonation on specific surface area.

The effect of Fe2O3 nanoparticles instead cement on the stability of fluid-conveying concrete pipes based on exact solution

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • This paper deals with the stability analysis of concrete pipes mixed with nanoparticles conveying fluid. Instead of cement, the $Fe_2O_3$ nanoparticles are used in construction of the concrete pipe. The Navier-Stokes equations are used for obtaining the radial force of the fluid. Mori-Tanaka model is used for calculating the effective material properties of the concrete $pipe-Fe_2O_3$ nanoparticles considering the agglomeration of the nanoparticles. The first order shear deformation theory (FSDT) is used for mathematical modeling of the structure. The motion equations are derived based on energy method and Hamilton's principal. An exact solution is used for stability analysis of the structure. The effects of fluid, volume percent and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field and geometrical parameters of pipe are shown on the stability behaviour of system. Results show that considering the agglomeration of $Fe_2O_3$ nanoparticles, the critical fluid velocity of the concrete pipe is decreased.

Evaluation of Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 특성평가)

  • Lee, Jong-Kyu;Soh, Jung-Sub;Chu, Yong-Sik;Song, Hun;Park, Ji-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.598-603
    • /
    • 2012
  • MgO based cement for the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. Furthermore, adding reactive MgO to Portland-pozzolan cement can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as starting materials was carried out. In order to increase the hydration activity, $MgCO_3$ and serpentinite were fired at a temperature higher than $600^{\circ}C$. In the case of $MgCO_3$ as starting material, hydration activity was highest at $700^{\circ}C$ firing temperature; this $MgCO_3$ was completely transformed to MgO after firing. After the hydration reaction with water, MgO was totally transformed to $Mg(OH)_2$ as hydration product. In the case of using only $MgCO_3$, compressive strength was 35 $kgf/cm^2$ after 28 days. The addition of silica fume and $Mg(OH)_2$ led to an enhancements of the compressive strength to 55 $kgf/cm^2$ and 50 $kgf/cm^2$, respectively. Serpentine led to an up to 20% increase in the compressive strength; however, addition of this material beyond 20% led to a decrease of the compressive strength. When we added $MgCl_2$, the compressive strength tends to increase.

The Estimation of Emission Factor of N2O and CH4 by Measurement from Stacks in the Waste Incinerators and Cement Production Plants

  • Choi, Sang-Min;Im, Jong-Kwon;Hong, Ji-Hyoung;Lee, Sue-Been;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.217-226
    • /
    • 2007
  • The purpose of this study is to estimate the emission factor of $non-CO_2$ global warming gases such as $N_2O$ and $CH_4$ by measuring concentrations from stacks of waste incinerators and cement production plants. Based on the established monitoring methods, $N_2O$ concentration measured from stacks in incinerator were between 0.62 and $40.60\;ppm_v$ (ave. $11.50\;ppm_v$). The concentration of $N_2O$ was dependent on the incinerator types. However, the concentrations of $CH_4$ gas were between 2.65 and $5.68\;ppm_v$ (ave. $4.22\;ppm_v$), and did not show the dependency on the incinerator types. In the cement production plant, the concentration ranges of $N_2O$ from the stack were from 6.90 to $10.80\;ppm_v$ (ave. $8.60\;ppm_v$), and $CH_4$ were between 1.80 and $2.20\;ppm_v$ (ave. $2.60\;ppm_v$). Using measured concentrations, the emission amounts of $N_2O$ and $CH_4$ from stacks per year were calculated. The results were is 4.2 ton $N_2O/yr$ in the incinerators, and 53.7 ton $N_2O/yr$ in the cement facilities. The big difference is from the flow rate of flue gas in the cement facilities compared to the incinerators. By the same reason, the $CH_4$ emission amounts in cement plant and incinerator was found to be 339 ton $CO_2/yr$ and 34.1 ton $CO_2/yr$, respectively. Finally, the emission factor of $N_2O$ in the incinerators were calculated using the measured concentration and the amount of incinerated wastes, and was $42.5\sim799.1\;g/ton$ in kiln and stoker type, $11.9\sim79.9\;g/ton$ in stoker type, 90.1 ton/g in rotary kiln type, 174.9 g/ton in fluidized bed type, and 63.8 g/ton in grate type, respectively. Also, the emission factors of $CH_4$ were found to 65.2-91.3 g/ton in kiln/stoker type, 73.9-122 g/ton in stoker type, 109.5 g/ton rotary kiln, and 26.1 g/ton in fluidized bed type. This result indicates that the emission factor in incinerators is strongly dependent on the incinerator types, and matched with result of IPCC (International Panel on Climate Change) guideline.

The Mechanical properties of Mud Flat mortar mixed with Blast furnace slag (고로슬래그가 혼입된 갯벌 모르타르의 역학적 특성)

  • Kang, Yun Young;Kim, Hui Doo;Kang, Dae kyu;Yang, Seong Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.32-33
    • /
    • 2015
  • Depending on the industrialization, construction market has grown buildings are based on concrete will continue to increase. But the problems of environmental pollution come to the fore with the indiscriminate use of concrete and rapid development. In addition, carbon dioxide(CO2) in the process of producing cement being emitted a large amount of has been caused a serious problem of environmental pollution. This trend is being actively conducted research to reduce the use of cement. In this study, eco-friendly materials, such as flats, Blast-furnace slag by mix and cement review the mechanical characteristics of the mudflats eco-friendly cement mortar to reduce the usability of the review were seen as a green building material.

  • PDF

A fundamental Study on the properties of Concrete by using the Rapid Hardening Blast Furnace Slag Cement (조강슬래그시멘트를 이용한 콘크리트의 기초물성에 관한 연구)

  • 김진춘;최광일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.72-77
    • /
    • 1995
  • Blast-furnace slag cement has been used widely as a structural material due to the latent hydraulicity of granulated ground blast furnace slag(GGBS)for a long time as The wall as ordinary portland cement. In this study, based on the fundamental investigation on the high strength and high durable concrete using the high fineness GGBS the following remarks can be made. 1) The average desired strenth of concrete is Or=600~800kg/$\textrm{cm}^2$. 2) The above high strength concrete using the high fineness GGBS is more workable than those using only OPC. 3) The adiabatic temperature and drying shringkage decrease, so the density and resistance to sea water attack increase as results. 4)The unit cement content and unit air entrained admixture at the same desired strength of concrete decrease, so the economical high strength concrete can be manufactured from using the high fineness GGBS.

  • PDF

A Study on the Preparation Method of Geopolymeric Concrete using Specifically Modified Silicate and Inorganic Binding Materials and Its Compressive Strength Characteristics

  • Kim, Jong Young
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.150-153
    • /
    • 2015
  • Recently, research on geopolymeric concrete that does not use cement as a binder has been actively investigated. Geopolymeric concrete is cement-free concrete. Masato, ocher and/or soil has been solidified into geopolymeric concrete by the reaction of specifically modified silicate as an alkali activator and inorganic binding materials such as blast furnace slag, fly ash or meta-kaolin, which is cured at room temperature to exhibit high compressive strengths. Based on the results, this study shows how geopolymeric concrete that uses specifically modified silicate and inorganic binding materials is implemented as eco-cement with no cement.

Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers

  • Mazloom, Moosa;Mirzamohammadi, Sajjad
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.137-154
    • /
    • 2019
  • In this study, thermal effects on the mechanical properties of cement mortars with some types of fibers is investigated. The replaced fibers were made of polypropylene (PP), aramid, glass and basalt. In other words, the main goal of this paper is to study the effects of different fibers on the mechanical properties of cement mortars after subjecting to normal and sub-elevated temperatures. The experimental tests used for investigating these effects were compressive, splitting tensile, and four-point bending tests at 20, 100 and $300^{\circ}C$, respectively. Moreover, the microstructures of the specimens in different temperatures were investigated using scanning electron microscope (SEM). Based on the experimental results, the negative effects of sub-elevated temperatures on four-point bending tests were much more than the others. Moreover, using the fibers with higher melting points could not improve the qualities of the samples in sub-elevated temperatures.

Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste

  • Lee, Jun Cheol;Lee, Chang Joon;Chun, Woo Young;Kim, Wha Jung;Chung, Chul-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1328-1338
    • /
    • 2015
  • Years of research have shown that the application of microorganisms increases the compressive strength of cement-based material when it is cured in a culture medium. Because the compressive strength is strongly affected by the hydration of cement paste, this research aimed to investigate the role of the microorganism Sporosarcina pasteurii in hydration of cement paste. The microorganism's role was investigated with and without the presence of a urea-CaCl2 culture medium (i.e., without curing the specimens in the culture medium). The results showed that S. pasteurii accelerated the early hydration of cement paste. The addition of the urea-CaCl2 culture medium also increased the speed of hydration. However, no clear evidence of microbially induced calcite precipitation appeared when the microorganisms were directly mixed with cement paste.

Effect of curing temperature on the properties of ground granulated blast furnace slag-cement bentonite slurry

  • Kim, Taeyeon;Lee, Bongjik;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2022
  • To investigate the curing temperature effect on the engineering properties of ground granulated blast furnace slag-cement bentonite (GGBS-CB) slurry for cutoff walls, the laboratory experiments including the setting time, unconfined compressive strength, and permeability tests were carried out. The mixing procedure for GGBS-CB slurry was as follows: (1) montmorillonite-based bentonite slurry was first fabricated and hydrated for four hours, and (2) cement or GGBS with cement was added to the bentonite slurry. The dosage range of GGBS was from 0 to 90 % of cement by mass fraction. The GGBS-CB slurry specimens were cured and stored in environmental chamber at temperature of 14±1, 21±1, 28±1℃ and humidity of 95±2% until target days. The highest average temperature of three seasons in South Korea was selected and used for the tests. The experimental results indicated that in early age (less than 28 days) of curing the engineering properties of GGBS-CB slurry were primarily affected by the curing temperature, whereas the replacement ratio of GGBS became a main factor to determine the properties of the slurry as the curing time increased.