• Title/Summary/Keyword: 2-질량 모델

Search Result 272, Processing Time 0.024 seconds

Prediction of Nitric Oxide Formation Using a Two-Zone Model in a DI Diesel Engine (2영역 모델을 이용한 EGR사용 직접분사식 디젤엔진의 Nox생성예측)

  • Kim, Cheol-Hwan;Lee, Jin-Ho;Chun, Kwang-Min;Lee, Kyo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.390-401
    • /
    • 2000
  • In this study, numerical calculation is carried out to investigate the influence of injection timing, fuel amount, intake $O_2$ concentration, and EGR on Nitric Oxide(NO) formation using a two-zone model in a diesel engine. Results can be summarized as follows. The NO formation is very sensitive to the burned gas temperature, so multi-zone model must be applied to combustion process to predict the burned gas temperature exactly. Since the burned gas temperature increases rapidly during the premixed combustion, most NO is formed within 20 crank angle degrees after ignition. As the injection timing is retarded, the combustion occurs later in the expansion process which causes the decrease of burned gas temperature and, as a result, NO formation decrease. The increase of fuel amount results in the increase of earlier formation of NO in the engine. As the intake $O_2$ concentration increases, the maximum pressure and burned gas temperature increase due to activate combustion. And, [O] mole fraction of equilibrium combustion products also increase. Therefore NO exponentially increases. If exhaust gas is recirculated, the burned gas temperature decreases which results in NO decrease. If exhaust gas is cooled, more NO can be decreased.

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.

Analysis of Water Storage Variation in Yangtze River Basin and Three Gorges Dam Area using GRACE Monthly Gravity Field Model (GRACE 월별 중력장모델을 이용한 양자강유역 및 삼협댐 지역 저수량 변화 분석)

  • Huang, He;Yun, Hong-Sic;Lee, Dong-Ha;Jeong, Tae-Jun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.375-384
    • /
    • 2009
  • The GRACE satellite, Launched in March 2002, is applied to research on glacial melt of polar regions, glacial isostatic adjustment(GIA), sea level change, terrestrial water storage(TWS) variation of river basin and large-scale earthquake etc. In this research, the TWS variation of Yangtze river basin from August, 2002 to January, 2009 is analyzed using Level-2 GRACE monthly gravity field model. Particularly, gravity changes of the Three Gorges Dam during the impoundment process in 2003, 2006 and 2008 is observed by estimating equivalent water thickness(EWT). The research results show the distinct annual and seasonal changes of Yangtze river basin, and its amplitude of annual variation is 2.3cm. In addition, we compare the results with water resource statistics and hydrologic observation data to confirm the possibility of research of TWS variation of river basin using GRACE observation data, and also the satellite gravity data is of great help for the research on the movement and periodic changes of river basin.

Theoretical Model of Coaxial Twin-Fluid Spray In a Liquid Rocket Combustor (연소실 내 동축형 2-유체 분무의 이론적 모델)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.37-44
    • /
    • 2002
  • A theoretical study of spray and combustion characteristics due to coaxial twin-fluid injection is conducted to investigate the effects of liquid jet property, droplet size, contact length and liquid jet velocity. Model is properly validated with measurements and shows good agreement. Prediction of jet contact length, droplet size, liquid jet velocity reflects genuine features of coaxial injection in physical and practical aspects. Both the jet contact length and tile droplet size are reduced in a linear manner with an increase of injector diameter. Cross sectional area of liquid intact core is reduced with augmented jet splitting rate, thus the jet is accelerated to maintain the mass continuity and with an assistant of momentum diffusion by burnt gas.

A Two-Phase Pressure Drop Calculation Code Based on A New Method with a Correction Factor Obtained from an Assessment of Existing Correlations (기존 상관관계식들의 평가를 통해 얻은 수정계수를 사용하는 새로운 방법에 기초한 2상류 압력강하 계산코드)

  • Chun, Moon-Hyun;Oh, Jae-Guen
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.73-88
    • /
    • 1989
  • Ten methods of the total two-phase pressure drop prediction based on five existing models and correlations have been examined for their accuracy and applicability to pressurized water reactor conditions. These methods were tested against 209 experimental data of local and bulk boiling conditions : Each correlations were evaluated for different ranges of pressure, mass velocity and Quality, and best performing models were identified for each data subsets. A computer code entitled 'K-TWOPD' has been developed to calculate the total two-phase pressure drop using the best performing existing correlations for a specific property range and a correction factor to compensate for the predicted error of the selected correlations. Assessment of this code shows that the present method fits all the available data within $\pm$11% at a 95% confidence level compared with $\pm$25%, for the existing correlations.

  • PDF

Comparative Studies of Heat Transfer Coefficients for Rocket Nozzle (로켓 노즐의 열전달계수 비교 연구)

  • Hahm, Hee-Cheol;Kang, Yoon-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.42-50
    • /
    • 2012
  • The goal of heat transfer studies is the accurate prediction of temperature and heat flux distribution on material boundaries. To this purpose, general-purpose computational fluid dynamics(CFD) code is used : FLUENT. Mass fluxes and pressure ratio are calculated for two types of nozzle. The comparative studies reveal that the computational results are in agreement with the experimental data. Also, heat transfer coefficients from FLUENT for one type of nozzle are very similar and agree well with the experimental data in the diverging part of the nozzle, but the calculated results are large in the converging part. The heat transfer coefficients from Bartz equation are over-predicted. We can consider various reasons for these differences, i.e., laminarization by the highly accelerated flow in the nozzle, turbulent flow model and grid generation.

Optimal Design of the Stacking Sequence on a Composite Fan Blade Using Lamination Parameter (적층 파라미터를 활용한 복합재 팬 블레이드의 적층 패턴 최적설계)

  • Sung, Yoonju;Jun, Yongun;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.411-418
    • /
    • 2020
  • In this paper, approximation and optimization methods are proposed for the structural performance of the composite fan blade. Using these methods, we perform the optimal design of the stacking sequence to maximize stiffnesses without changing the mass and the geometric shape of the composite fan blade. In this study, the lamination parameters are introduced to reduce the design variables and space. From the characteristics of lamination parameters, we generate response surface model having a high fitness value. Considering the requirements of the optimal stacking sequence, the multi-objective optimization problem is formulated. We apply the two-step optimization method that combines gradient-based method and genetic algorithm for efficient search of an optimal solution. Finally, the finite element analysis results of the initial and the optimized model are compared to validate the approximation and optimization methods based on the lamination parameters.

A Study on Stress Recovery Analysis of Dimensionally Reducible Composite Beam Structure with High Aspect Ratio using VABS (VABS를 이용한 높은 세장비를 가진 복합재료 보 구조의 차원축소 및 응력복원 해석기법에 대한 연구)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.405-411
    • /
    • 2016
  • This paper presented the theory related to a two dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite beam with initial twist and high aspect ratio. Using VABS including related theory, preceding research data of the composite wing structure has been modeled and compared. Cross-sectional analysis was performed and 1-D beam was modeled at cutting point including all the details of real geometry and material. The 3-D strain distribution and margin of safety at recovery point was calculated based on the global behavior of the 1-D beam analysis and visualize numerical results.

An Experimental Investigation of the Effect of the Entrance Shape of Sudden Contraction on Single and Two-Phase Pressure Drop in Horizontal Air-Water Flow (공기와 물의 수평유동에 있어 관의 급격한 입구축소 모양이 단상 및 이상유 압력강하에 미치는 영향에 관한 실험적 연구)

  • Chun, Moon-Hyun;Baek, Joo-Seok;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.123-133
    • /
    • 1989
  • The pressure drops through contractions in horizontal single and two-phase flow were investigated. A total of 167 measurements were made for four different entrance shapes to study the effects of the entrance shape on the pressure drop through a contraction in horizontal single and two-phase flow. From this data, pressure drops were calculated and compared with the pressure drops predicted by analytical models for single and two-phase flow. For single phase How the agreement between the data and predictions is within $\pm$25%, whereas for two-phase flow Hoopes model, which gives a better agreement than the homogeneous model, underpredicts the data as much as 45% In addition, the effects of void fraction and liquid phase mass velocity on the pressure drop through the sudden How channel contraction were investigated for two-phase flow.

  • PDF

A Study for the Removal of Phosphorous Using Coated Exfoliated Vermiculite (인 제거를 위한 코팅 발포질석 적용 가능성 연구)

  • Kim, Seogku;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.5-13
    • /
    • 2014
  • In this study, exfoliated vermiculite (EV) coated with glycerol was tested for its abiility to remove phosphorus in aqueous solution. The glycerol modified vermiculite (GS) was prepared with EV/glycerol ratio of 1/4 where glycerol contained 4 mol% $H_2SO_4$ and heated until designated temperature. GS heated at $380^{\circ}C$ showed that the specific surface area was $53.1m^2/g$ and mass loss due to oxidation of carbon was maximum from TGA analysis. Removal of phosphorus using GS heated at $380^{\circ}C$ was well explained by Langmuir isotherm model and maximum sorption capacity of 714.3 mg/kg is comparable or greater than those of other clay orignated sorbents for phosphorus.