• Title/Summary/Keyword: 2-온도 모델

Search Result 1,548, Processing Time 0.033 seconds

Prediction of Seedling Emergence and Early Growth of Monochoria vaginalis and Scirpus juncoides under Elevated Temperature (상승된 온도 조건에서 물달개비(Monochoria vaginalis)와 올챙이고랭이(Scirpus juncoides)의 출아 및 초기생장 예측)

  • Park, Min-Won;Kim, Jin-Won;Lim, Soo-Hyun;Lee, In-Yong;Kim, Do-Soon
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • This experiment was conducted to investigate seedling emergence and early growth of Monochoria vaginalis and Scirpus juncoides in the controlled-environment chamber maintained at different temperatures. Non-linear regression analyses of observed data against effective accumulated temperature (EAT) with the Gompertz and logistic models showed that the Gompertz and logistic models worked well in describing seedling emergence and early growth of both weed species, respectively, regardless of temperature. EATs required for 50% of the maximum seedling emergence and the maximum leaf number of M. vaginalis were estimated to be 69.3 and $131^{\circ}C$, respectively, while those of S. juncoides were 94.8 and $137^{\circ}C$, respectively. Models developed in this study thus were used to predict seedling emergence and early growth under elevated temperature condition. If rotary tillage with water is made on 27 May under $+3^{\circ}C$ elevated temperature condition, dates for 50% of the maximum seedling emergence and 4 leaf stage were predicted to be 1 June and 15 June for M. vaginalis and 3 June and 14 June for S. juncoides, respectively. As compared with current temperature, these dates are 1-2 days earlier for the seedling emergence and 3 days earlier for the early growth, suggesting that earlier application of herbicides is required for effective control of M. vaginalis and S. juncoides under elevated temperature condition in the future.

A Study on the Simulation of Chemical Heat Pump System Based on 2-Propanol /Acetone/Hydrogen System (2-Propanol/Acetone/Hydrogen 반응계로 구성된 화학적 열펌프 시스템의 모사 연구)

  • 김범재;여영구;정연수;송형근
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 1996
  • 2-propanol/acetone/hydrogen 반응계로 구성된 화학적 열펌프 시스템은 낮은 온도(82.5~$90^{\circ}C$)에서의 2-propanol의 탈수소화 반응과 높은 온도(약 $200^{\circ}C$ 부근)에서의 acetone의 수소화반응을 이용하여 열을 고품위화 시키는 장치이다. 본 연구에서는 이 시스템의 해석 및 설계를 목적으로 이 시스템에 대한 수치적인 모델들을 세우고 Sequential modular approach를 이용하여 시스템의 모사를 수행하였다. 또한 에너지 효율을 최대화하기 위하여 열펌프 시스템에서의 환류비의 영향을 규명하였다. 모사결과 이 시스템의 scale up을 위한 정량적인 정상상태 운전조건들을 구할수 있었으며 두 반응의 반응 전화율이 다르더라도 반응물의 유량의 차이를 통하여 두 반응열이 거의 같아지는 것을 알수 있었다. 아울러 주어진 운전조건에서 증류의 환류비는 최소환류비 근처의 최적값이 존재함을 알수 있었다.

  • PDF

A study on the phase formation and sequence in Ni/Si system during ion beam mixing (Ion Beam Mixing에 의한 Ni/Si계의 상 형성 및 전이에 관한 연구)

  • Choe, Jeong-Dong;Gwak, Jun-Seop;Baek, Hong-Gu;Hwang, Jeong-Nam;Han, Jeong-In
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.503-511
    • /
    • 1995
  • 금속/실리콘계에 대한 이온선 혼합시의 비정질상 및 결정상 형성여부를 예측할 수 있는 모델(ADF Model)과초기 결정상 예측 모델(PDF Model)의 적용을 실험적으로 조사하기 위하여 Ni/Si계에 대한 이온선 혼합을 온도와 이온선량을 변수로 하여 행하였으며 상형ㅅㅇ과정을 해석하였다. 이온선 혼합은 80keV가속기를 이용하여 상온~20$0^{\circ}C$의 온도 범위에서 1.0 $\times$ $10^{15}$Ar^{+}$/$cm^{2}$~2.0 $\times$ $10^{-16}$Ar^{+}$/$cm^{2}$의 이온선량을 변화시키면서 실험하였고, 상분석은 TEM과 GXRD를 이용하였다. Ni/Si게에 대한 ADF값은 0.804로 양의 값을 가지므로 이온선 혼합시 비정실상이 형성되고, $Ni_{2}$Si상이 다른 화합물상보다 훨씬 큰 음의 PDF값을 갖으므로 초기 결정상이 $Ni_{2}$Si가 될 것을 예측하였다. 이러한 예측은 실험결과와 매우 잘 일치하였다. 이상의 연구결과로부터 ADF 및 PDF모델을 이용하여 박막에서 형성되는 상을 보다 정확히 예측할수 잇음을 알 수 있었다.

  • PDF

Estimation of Onion Leaf Appearance by Beta Distribution (Beta 함수 기반 기온에 따른 양파의 잎 수 증가 예측)

  • Lee, Seong Eun;Moon, Kyung Hwan;Shin, Min Ji;Kim, Byeong Hyeok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.78-82
    • /
    • 2022
  • Phenology determines the timing of crop development, and the timing of phenological events is strongly influenced by the temperature during the growing season. In process-based model, leaf area is simulated dynamically by coupling of morphology and phenology module. Therefore, the prediction of leaf appearance rate and final leaf number affects the performance of whole crop model. The dataset for the model equation was collected from SPA R chambers with five different temperature treatments. Beta distribution function (proposed by Yan and Hunt (1999)) was used for describing the leaf appearance rate as a function of temperature. The optimum temperature and the critical value were estimated to be 26.0℃ and 35.3℃, respectively. For evaluation of the model, the accumulated number of onion leaves observed in a temperature gradient chamber was compared with model estimates. The model estimate is the result of accumulating the daily increase in the number of onion leaves obtained by inputting the daily mean temperature during the growing season into the temperature model. In this study, the coefficient of determination (R2) and RMSE value of the model were 0.95 and 0.89, respectively.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

Numerical Model study of Surface Temperature and Hydrological Budget Change for the Last Glacial Maximum (마지막 최대 빙하기의 온도 및 물수지 변화 수치모델연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 2006
  • The surface temperature and hydrological budget for the last glacial maximum (LGM) is simulatedwith an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corespondingto a grid cel size of roughly 75 km. LGM simulations were forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced CO2, and orbital parameters.oC in winter, 5.6oC in sumer,and 6oC annual-mean. The decrease of surface temperature leads to a weakening of the hydrologicalcycle. Global-mean precipitation decreases by about 14% in winter, 17% in summer, and 13% annually.However, some regions such as the U.S., southern Europe, northern and eastern Africa, and the SouthAmerica appear to be weter in the LGM winter and Canada and the Midle East are weter in sumer. model captures detailed climate features over land.

  • PDF

Application of the WSGGM for arbitrary gas mixtures of water vapor and carbon dioxide (임의 성분비로 구성된 수증기-이산화탄소 혼합가스에 대한 회색가스가중합법의 적용 연구)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • The weighted sum of gray gas model(WSGGM) is applied to arbitrary mixtures of CO$_2$ and H$_2$0 gases. To evaluate this model, the spectral and total intensities are obtained for two different problem types. One has uniform, parabolic and boundary layer type temperature profiles with uniform partial pressure, and the other has nonuniform partial pressure and temperature profile. The results obtained from the two different problem types show fairly good agreements with the results obtained by the statistical narrow band model(SNB model) which is regarded as the reference solutions. The WSGGM and its data base provided by this study can be used for analysis of radiative transfer by combustion gases with different thermal loadings and chemical compositions.

Assessment of RELAP5MOD2 Cycle 36.04 using LOFT Intermediate Break Experiment L5-1 (LOFT중형 냉각재 상실 사고 모사 실험 자료 L5-1을 이용한 RELAP5/MOD2 Cycle 36.04 코드 평가)

  • Lee, E.J.;Chung, B.D.;Kim, H.J.
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.66-80
    • /
    • 1991
  • The LOFT intermediate break experiment L5-1, which simulates 12 inch diameter ECC line break in a typical PWR, has been analyzed using the reactor thermal/hydraulic analysis code RELAP5/MOD2, Cycle 36.04. The base calculation, which modeled the core with single flow channel and two heat structures without using the options of reflood and gap conductance model, has been successfully completed and compared with experimental data. Sensitivity studies were carried out to investigate the effects of nodalization at reactor vessel and core modeling on major thermal hydraulic parameters, especially on peak cladding temperature(PCT). These sensitivity items are : single flow channel and single heat structure (Case A), two flow channel and two heat structures (Case B), reflood option added (Case C) and both reflood and gap conductance options added (Case D). The code, RELAP5/MOD2 Cycle 36.04 with the base modeling, predicted the key parameters of LOFT IBLOCA Test L5-1 better than Cases A,B,C and D. Thus, it is concluded that the single flow channel modeling for core is better than the two flow channel modeling and two heat structure is also better than single heat structure modeling to predict PCT at the central fuel rods. It is, therefore, recommended to use the reflood option and not to use gap conductance option for this L5-1 type IBLOCA.

  • PDF

Development of Simulation Model for Greenhouse Heating System Using Latent Heat Storage System (잠열축열을 이용한 그린하우스 난방시스템의 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.31-33
    • /
    • 2001
  • 잠열축열 그린하우스 난방 시스템의 난방특성을 분석하기 위하여 이에 대한 열평형 이론을 정립하고 수치해석에 의하여 컴퓨터 시뮬레이션 모델을 개발하고자 잠열축열 그린하우스 난방 시스템의 열저항 회로망을 구성하였다. 그리고 그린하우스의 피복재, 내부 공기, 토양표면, 잠열 축열재와의 열평형 방정식을 구성하였으며, Newton-Raphson반복법을 이용하여 수치해석을 하였고, 실험 분석을 통하여 수치해의 타당성을 검증하였다. 시뮬레이션 모델을 위하여 C언어를 사용하였으며, 겨울철 (11월-2월)의 기후 조건이 유사한 여러 날을 선정하여 온도, 태양강도, 상대습도, 토양 수분함량 등을 자료로 하여 모델링을 하였다. 여기에 사용된 토양 조건은 사양토로 건조한 상태를 유지하였다. 이상과 같은 분석에 의하여 그린하우스내 경시적 공기온도 변화와 열전달 현상의 실험치와 이론분석 결과가 잘 일치하고 있음을 알 수 있었다.

  • PDF

A Simulation Study of Phosphoric Acid Fuel Cell Process Using Back-propagation Neural Network (오류역전파 신경망을 이용한 인산형 연료전지 공정의 전산모사)

  • 이원재;김성준;설용건;이태희
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.17-22
    • /
    • 1994
  • 오류역전파 신경망을 인산형 연료전지의 조업변수인 산소 및 수소 유량, 작동온도에 대하여 학습시켜 연료전지 모델을 구성하였다. 또한 구성된 모델을 이용하여 다양한 조업조건에서의 단위전지 성능을 예측하여 이를 실험결과와 비교하였으며, 학습된 신경망을 ASPEN PLUS의 단위공정으로 도입하여 50kW 출력의 연료전지 공정을 구성한 후 조업변수에 대한 영향을 살펴보았다. 3개의 층으로 구성된 오류역전파 신경망은 학습단계상수와 모멘텀이 각각 0.7 및 0.9인 경우 단위전지 성능곡선을 가장 정확히 학습하였으며, 이에 의하여 구성된 신경망 모델은 수소 및 산소의 유량, 온도의 변화에 따른 단위전지 성능곡선의 변화를 정확히 예측하였다. 연료전지 전체공정의 모사에서는 개질기의 경우 $600^{\circ}C$의 상압에서 수증기/탄화수소 비율이 2.6일 때, 연료전지의 경우 작동온도가 190~20$0^{\circ}C$일 때 연료전지의 출력이 최대값을 나타내었으며, 단위전지의 전기화학적 효율은 약 45%, 수소이용률은 약 61%, 발전시스템 전체의 효율은 18%이었다.

  • PDF