• Title/Summary/Keyword: 2-관성계

Search Result 80, Processing Time 0.028 seconds

Overview of sensor fusion techniques for vehicle positioning (차량정밀측위를 위한 복합측위 기술 동향)

  • Park, Jin-Won;Choi, Kae-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2016
  • This paper provides an overview of recent trends in sensor fusion technologies for vehicle positioning. The GNSS by itself cannot satisfy precision and reliability required by autonomous driving. We survey sensor fusion techniques that combine the outputs from the GNSS and the inertial navigation sensors such as an odometer and a gyroscope. Moreover, we overview landmark-based positioning that matches landmarks detected by a lidar or a stereo vision to high-precision digital maps.

Chaos Control of the Pitch Motion of the Gravity-gradient Satellites in an Elliptical Orbit (타원궤도상의 중력구배 인공위성의 Pitch운동의 혼돈계 제어)

  • Lee, Mok-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • The pitch motion of a gravity-gradient satellite can be chaotic, depending on the ratio of mass moments of inertia and the eccentricity of the satellite orbit. For a precise prediction of motion, chaotic pitch motion has to be changed to non-chaotic motion. Feedback control can be used to obtain nonchaotic pitch motion. For chaos control and stabilization of the pitch motion of a gravity-gradient satellite, a feedback control system is designed, based on the linear nonautonomous system obtained by linearizing the nonlinear pitch motion. The control law obtained has two parameters and is applied to chaotic nonlinear pitch motion. The nonlinear control system satisfies the proposed control objectives in the range of the nonchaotic parameter space.

Recent Development Trends of Fiber Optic Gyroscope in Space Application (우주용 광섬유자이로 개발동향)

  • Jung, Dong-Won;Kim, Jeong-Yong;Oh, Jun-Seok;Roh, Woong-Rae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.76-85
    • /
    • 2010
  • This paper discusses recent development trends of fiber optic gyroscope (FOG) in space application. Fiber optic gyroscope utilizes Sagnac effect to measure the angular rate of a rotating object in space. Having a rather short development history compared to ring laser gyroscope (RLG), the fiber optic gyroscope, owing to the emerging technologies in fiber optic society and the digital signal processing technique, reveals itself as a noteworthy replacement of the ring laser gyroscope in the space mission. This paper summarizes the current trends of fiber optic gyroscope based on the actual products commercialized in the market over the last decades, while presenting the future development trends of the fiber optic gyroscope in the space exploration.

  • PDF

A Study on Design Parameters of Dual Mass Flywheel System (Dual Mass Flywheel 시스템의 설계 파라미터에 관한 연구)

  • 송준혁;홍동표;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1998
  • A Dual Mass Flywheel(D.M.F.) system is an evolution to the reduction of torsional vibration and impact noise occurring in powertrain when a vehicle is either moving or idling. The D.M.F. system has two flywh-eels, which is different from the conventional clutch system. One section belongs to the mass moment of in-ertia of the engine-side. The other section increases the mass moment of inertia of the transmission-side. These two masses are connected via a spring/damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984m D.M.F. system has been developed. However, the processes of development of D.M.F. system don't have any difference from the trial and error method of conventional clutch system. This paper present the method for systematical design of D.M.F. system with dimensionless design varia-bles of D.M.F. system, mass ratio between two flywheels, natural frequency rate of two flywheels, and visc-osity coefficient. And expermental results are used to prove these theoretical results.

  • PDF

$H_{\infty}$ Control of Two-Mass System with Resonance Ratio Control (공진비제어를 갖는 2관성계의 $H_{\infty}$ 제어)

  • Kim, Jin-Soo;Kim, Seoung-Beom;Kim, Hyun-Jung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.504-506
    • /
    • 1996
  • In the industrial motor drive systems, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of this system. The resonance ratio control is proposed for suppressing the torsional vibration. In this paper, first, the optimal resonance ratio is sellected and the controller to the resonance ratio controlled outward plant is designed based on $H_{\infty}$ control theory. Secondly, the two-degree-of-freedom controller, which includes the above $H_{\infty}$ controller, is designed in order to improve the tracking characteristics for the commanded speed. The control performances are examined by the computer simulations and it is clarified that the proposed speed control system is useful for two-mass system.

  • PDF

Controller Design for Flexible Joint of Industrial Robots: Part 1 - Modeling of the Two-Mass System (산업용 로봇의 유연관절 제어기 설계: Part 1 - 2관성계 모델링)

  • Park Jong-Hyeon;Lee Sang-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.269-276
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents the vibration mechanism of an industrial robot which has flexible joints. The joint flexibility of the robot is modeled as a two-mass system and its dynamic characteristics are analysed. And some characteristics of the two-mass system, especially for the joint of industrial robots, such as disturbance, non-linearity and time-varying characteristics are studied. And finally, some considerations on controller design for the flexible joint of industrial robots are discussed.

Vibration suppression control of two-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 갖는 2관성계의 진동억제제어)

  • Kim, Jin-Soo;Park, Hae-Am;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1133-1135
    • /
    • 2000
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two-degrees-of-freedom $H_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, a new partial state feedback $H_{\infty}$ controller with resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

  • PDF

Design of a pen-shaped input device using the low-cost inertial measurement units (저가격 관성 센서를 이용한 펜 형 입력 장치의 개발)

  • Chang, Wook;Kang, Kyoung-Ho;Choi, Eun-Seok;Bang, Won-Chul;Potanin, Alexy;Kim, Dong-Yoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.247-258
    • /
    • 2003
  • In this paper, we present a pen-shaped input device equipped with accelerometers and gyroscopes that measure inertial movements when a user writes on 2 or 3 dimensional space with the pen. The measurements from gyroscope are integrated once to find the attitude of the system and are used to compensate gravitational effect in the accelerations. Further, the compensated accelerations are integrated twice to yield the position of the system, whose basic concept stems from the field of inertial navigation. However, the accuracy of the position measurement significantly deteriorates with time due to the integrations involved in recovering the handwriting trajectory This problem is common in the inertial navigation system and is usually solved by the periodic or aperiodic calibration of the system with external reference sources or other information in the filed of inertial navigation. In the presented paper, the calibration of the position or velocity is performed on-line and off-line. In the on-line calibration stage, the complementary filter technique is used, where a Kalman filter plays an important role. In the off-line calibration stage, the constant component of the resultant navigational error of the system is removed using the velocity information and motion detection algorithm. The effectiveness and feasibility of the presented system is shown through the experimental results.

A Study on the Position Control of an Electro-Hydraulic Servomechanism Using Variable Structure System (가변구조를 이용한 전기-유압서보계의 위치제어에 관한 연구)

  • 허준영;권기수;하석홍;조겸래;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 1989
  • This paper describes the application of the variable structure control(VSC) concept for the position control of an electro-hydraulic servomotor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state space with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems. The control scheme is derived, implemented and tested in the laboratory where analog controller have been used to control the representive servosystem. The control system schematics are given and simple results are shown for illustration. And the results of variable structure system for the electro-hydraulic servomotor were compared to that of the fixed structure system when load disturbance and system parameter variation exists.

동해 남부해역의 심층류 관측

  • 이진기;안희수;신홍렬;윤종환
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.203-206
    • /
    • 2002
  • 동해 남부해역의 5개 정점에서 유속계 계류에 의한 장기 해류 관측이 한일 공동으로 행해졌다. 1000 m이상의 유속장을 조사하기 위해 각 정점에는 유속계가 두 개씩 부착되어 1∼3년간(1998∼2001년) 계류되었다 유속계 관측 자료는 심층류가 대체로 해저지형을 따라 흐르고 있음을 보여주고 있다. 즉, 울릉분지 남동사면과 야마토해령 서북부해역에서는 주로 북향류가 우세하고, 야마토분지 중앙과 남서쪽 가장자리 해역에서는 남향류가 지배적이며, 야마토분지 남동해역에서는 동향류가 강한 순환 형태를 이루고 있는 것이다 계절별로는 12∼2월의 겨울철에 연중 최대 유속이 보여지며, 일주조의 조석성분과 관성운동의 흔적 외에 3∼5일 주기의 불규칙한 변동은 연중 나타나고 있다.