• Title/Summary/Keyword: 2 order system

Search Result 14,807, Processing Time 0.065 seconds

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF

STUDY ON THE RELATIONSHIP BETWEEN SEROTONIN SYSTEM AND PSYCHOPATHOLOGY IN TOURETTE'S DISORDER (Tourette씨병의 Serotonin계와 정신병리와의 상호관계에 관한 연구)

  • Cho, Soo-Churl;Shin, Yun-O;Suh, Yoo-Hun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.7 no.1
    • /
    • pp.77-91
    • /
    • 1996
  • In order to elucidate the biological etiology and the effects of comorbidity on biological variables in tic disorders, plasma serotonin (5-hydroxlfryptamine, 5-HT) and 5-hydroxy- indoleacetic acid (5-HIAA) we.e measured in 87 tic disorders and 30 control subjects. The 87 tic disorder were composed of 45 Tourette's disorder(TS), 22 chronic motor tic disorders (CMT) and 20 transient tic disorders (TTD). Among these patients,43 patients were pure tic disorder (PT), 28 subject also had attention deficit hyperactivity disorder (T+ADHD) and 16 subjects had obsessive compulsive disorders (T+ OCD) as comorbid disorders. The results are summarized as follows : 1) Plasma 5-HT levels showed significant positive correlations with plasma 5-HIAA levels (Pennon r=0.77, p<0.05). 2) Plasma 5-HT and 5-HIAA levels showed no significant correlation with age in tic disorders. 3) Plasma 5-HIAA and 5-HT levels showed no significant correlations with age in control subjects. 4) There was significant difference in plasma 5-HT levels among TS, CMT, TTD and control groups (ANOVA F=34.48, df=3, 113, p<0.01), and post-hoc test using Scheffe method showed significant differences between control and TS, control and CMT, control and ITD groups. But, post-hoc test showed no significant differences between TS and CMT, TS and TTD, CMT and TTD groups. 5) There was significant difference in plasma 5-HIAA levels among TS, CMT, TTD and control groups (ANOVA F=26.48, df=3, 113, p<0.01), and post-hoc test using Scheffe method showed significant differences between control and TS, control and CMT, control and TTD groups. But, post-hoc test showed no significant differences between TS and CMT, TS and TTD, CMT and TID groups.f) There was significant difference in plasma 5-HT and 5-HIAA levels among PT, T+ADHD, T+OCD and contol groups (ANOVA 5-HT, F=37.59, df=3, 113, p<0.01, 5-HIAA, F=27.37, df=3, 113, p<0.01), and post-hoc test using Scheffe method showed signiscant differences between control and PT, control and T+ADHD and control and T+OCB. But, post-hoc test showed no significant differences between PT and T+ADHD, PT and T+ OCD and T+ADHD and T+ OCD. These results show that decreased 5-HT and 5-HIAA levels may play a role in the genesis of tic disorders, but these findings have no significant correlations with the severity of tic disorders. And the comorbid disorders of tics may have minimal effects on the biochemical abnormalities. Future studies must be focused on the effects of serotonin agonists and antagonists on tic disorders and molecular biological methodology may enhance to elucidate the mechanisms of these abnormal findings.

  • PDF

Attitude Confidence and User Resistance for Purchasing Wearable Devices on Virtual Reality: Based on Virtual Reality Headgears (가상현실 웨어러블 기기의 구매 촉진을 위한 태도 자신감과 사용자 저항 태도: 가상현실 헤드기어를 중심으로)

  • Sohn, Bong-Jin;Park, Da-Sul;Choi, Jaewon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.165-183
    • /
    • 2016
  • Over the past decade, there has been a rapid diffusion of technological devices and a rising number of various devices, resulting in an escalation of virtual reality technology. Technological market has rapidly been changed from smartphone to wearable devices based on virtual reality. Virtual reality can make users feel real situation through sensing interaction, voice, motion capture and so on. Facebook.com, Google, Samsung, LG, Sony and so on have investigated developing platform of virtual reality. the pricing of virtual reality devices also had decreased into 30% from their launched period. Thus market infrastructure in virtual reality have rapidly been developed to crease marketplace. However, most consumers recognize that virtual reality is not ease to purchase or use. That could not lead consumers to positive attitude for devices and purchase the related devices in the early market. Through previous studies related to virtual reality, there are few studies focusing on why the devices for virtual reality stayed in early stage in adoption & diffusion context in the market. Almost previous studies considered the reasons of hard adoption for innovative products in the viewpoints of Typology of Innovation Resistance, MIR(Management of Innovation Resistant), UTAUT & UTAUT2. However, product-based antecedents also important to increase user intention to purchase and use products in the technological market. In this study, we focus on user acceptance and resistance for increasing purchase and usage promotions of wearable devices related to virtual reality based on headgear products like Galaxy Gear. Especially, we added a variables like attitude confidence as a dimension for user resistance. The research questions of this study are follows. First, how attitude confidence and innovativeness resistance affect user intention to use? Second, What factors related to content and brand contexts can affect user intention to use? This research collected data from the participants who have experiences using virtual rality headgears aged between 20s to 50s located in South Korea. In order to collect data, this study used a pilot test and through making face-to-face interviews on three specialists, face validity and content validity were evaluated for the questionnaire validity. Cleansing the data, we dropped some outliers and data of irrelevant papers. Totally, 156 responses were used for testing the suggested hypotheses. Through collecting data, demographics and the relationships among variables were analyzed through conducting structural equation modeling by PLS. The data showed that the sex of respondents who have experience using social commerce sites (male=86(55.1%), female=70(44.9%). The ages of respondents are mostly from 20s (74.4%) to 30s (16.7%). 126 respondents (80.8%) have used virtual reality devices. The results of our model estimation are as follows. With the exception of Hypothesis 1 and 7, which deals with the two relationships between brand awareness to attitude confidence, and quality of content to perceived enjoyment, all of our hypotheses were supported. In compliance with our hypotheses, perceived ease of use (H2) and use innovativeness (H3) were supported with its positively influence for the attitude confidence. This finding indicates that the more ease of use and innovativeness for devices increased, the more users' attitude confidence increased. Perceived price (H4), enjoyment (H5), Quantity of contents (H6) significantly increase user resistance. However, perceived price positively affect user innovativeness resistance meanwhile perceived enjoyment and quantity of contents negatively affect user innovativeness resistance. In addition, aesthetic exterior (H6) was also positively associated with perceived price (p<0.01). Also projection quality (H8) can increase perceived enjoyment (p<0.05). Finally, attitude confidence (H10) increased user intention to use virtual reality devices. however user resistance (H11) negatively affect user intention to use virtual reality devices. The findings of this study show that attitude confidence and user innovativeness resistance differently influence customer intention for using virtual reality devices. There are two distinct characteristic of attitude confidence: perceived ease of use and user innovativeness. This study identified the antecedents of different roles of perceived price (aesthetic exterior) and perceived enjoyment (quality of contents & projection quality). The findings indicated that brand awareness and quality of contents for virtual reality is not formed within virtual reality market yet. Therefore, firms should developed brand awareness for their product in the virtual market to increase market share.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

Deep Learning-based Professional Image Interpretation Using Expertise Transplant (전문성 이식을 통한 딥러닝 기반 전문 이미지 해석 방법론)

  • Kim, Taejin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.79-104
    • /
    • 2020
  • Recently, as deep learning has attracted attention, the use of deep learning is being considered as a method for solving problems in various fields. In particular, deep learning is known to have excellent performance when applied to applying unstructured data such as text, sound and images, and many studies have proven its effectiveness. Owing to the remarkable development of text and image deep learning technology, interests in image captioning technology and its application is rapidly increasing. Image captioning is a technique that automatically generates relevant captions for a given image by handling both image comprehension and text generation simultaneously. In spite of the high entry barrier of image captioning that analysts should be able to process both image and text data, image captioning has established itself as one of the key fields in the A.I. research owing to its various applicability. In addition, many researches have been conducted to improve the performance of image captioning in various aspects. Recent researches attempt to create advanced captions that can not only describe an image accurately, but also convey the information contained in the image more sophisticatedly. Despite many recent efforts to improve the performance of image captioning, it is difficult to find any researches to interpret images from the perspective of domain experts in each field not from the perspective of the general public. Even for the same image, the part of interests may differ according to the professional field of the person who has encountered the image. Moreover, the way of interpreting and expressing the image also differs according to the level of expertise. The public tends to recognize the image from a holistic and general perspective, that is, from the perspective of identifying the image's constituent objects and their relationships. On the contrary, the domain experts tend to recognize the image by focusing on some specific elements necessary to interpret the given image based on their expertise. It implies that meaningful parts of an image are mutually different depending on viewers' perspective even for the same image. So, image captioning needs to implement this phenomenon. Therefore, in this study, we propose a method to generate captions specialized in each domain for the image by utilizing the expertise of experts in the corresponding domain. Specifically, after performing pre-training on a large amount of general data, the expertise in the field is transplanted through transfer-learning with a small amount of expertise data. However, simple adaption of transfer learning using expertise data may invoke another type of problems. Simultaneous learning with captions of various characteristics may invoke so-called 'inter-observation interference' problem, which make it difficult to perform pure learning of each characteristic point of view. For learning with vast amount of data, most of this interference is self-purified and has little impact on learning results. On the contrary, in the case of fine-tuning where learning is performed on a small amount of data, the impact of such interference on learning can be relatively large. To solve this problem, therefore, we propose a novel 'Character-Independent Transfer-learning' that performs transfer learning independently for each character. In order to confirm the feasibility of the proposed methodology, we performed experiments utilizing the results of pre-training on MSCOCO dataset which is comprised of 120,000 images and about 600,000 general captions. Additionally, according to the advice of an art therapist, about 300 pairs of 'image / expertise captions' were created, and the data was used for the experiments of expertise transplantation. As a result of the experiment, it was confirmed that the caption generated according to the proposed methodology generates captions from the perspective of implanted expertise whereas the caption generated through learning on general data contains a number of contents irrelevant to expertise interpretation. In this paper, we propose a novel approach of specialized image interpretation. To achieve this goal, we present a method to use transfer learning and generate captions specialized in the specific domain. In the future, by applying the proposed methodology to expertise transplant in various fields, we expected that many researches will be actively conducted to solve the problem of lack of expertise data and to improve performance of image captioning.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

Inflow at Ssangyongmun Gate During the Goryeo Dynasty and Its Identity (고려시대 쌍룡문경(雙龍紋鏡) 유입(流入)과 독자성(獨自性))

  • Choi, Juyeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.2
    • /
    • pp.142-171
    • /
    • 2019
  • The dragon is an imaginary animal that appears in the legends and myths of the Orient and the West. While dragons have mostly been portrayed as aggressive and as bad omens in the West, in the Orient, as they symbolize the emperor or have an auspicious meaning, dragons signify a positive meaning. In addition, as the dragon symbolizes the emperor and its type has been diversified considering it as a divine object that controls water, people have tried to express it as a figure. The records related to dragons in the Goryeo dynasty appeared with diverse topics in 'History of Goryeo' and are generally contents related to founding myths, rituals for rain, and Shinii (神異), etc. The founding myth emphasizes the legality of the Goryeo dynasty through the dragon, and this influenced the formation of the dragon's descendants. In addition, the ability to control water, which is a characteristic of the dragon, was symbolized as an earth dragon related to the rainmaking ritual, i.e., wishing for rain during times of drought. Since the dragon was the symbol of the royal family, the use of the dragon by common people was strictly restricted. Furthermore, the association of a bronze dragon mirror with the royal family is hard to be excluded. The type and quantity of bronze double dragon mirrors discovered to have existed during the Goryeo dynasty is great, and the production and the distribution of bronze mirrors with double dragons seem to have been more active compared to other bronze mirrors, as bronze mirrors with double dragons produced during Goryeo and bronze mirrors originating in China were mixed. Therefore, in this article, the characteristics of diverse bronze mirrors from the 10th century to the 14th century in China were examined. It seems that the master craftsmen who produced bronze mirrors with double dragons during the Goryeo dynasty were influenced by Chinese composition patterns when making the mirrors. Because there were many cases where a bronze mirror's country of origin could not easily be determined, in order to identify the differences between bronze double dragon mirrors produced during the Goryeo dynasty and bronze mirrors produced in China, meticulous analysis was required. Thus, to ascertain that Goryeo mirrors were not imitations of bronze mirrors with double dragons originating in China but produced independently, the mirrors were examined using the bronze double dragon mirror type classification system existing in our country. Bronze mirrors with double dragons are classified into three types: Type I, which has the style of the Yao dynasty, includes the greatest proportion; however, despite there being only a small quantity for comparison, Types II and III were selected for the analysis of the bronze mirrors with double dragons made in Goryeo because they have unique composition patterns. As mentioned above, distinguishing bronze mirrors made during Goryeo from bronze mirrors made in China is challenging because Goryeo bronze mirrors were made under the influence of China. Among them, since the manufacturing place of the bronze mirrors with double dragons found at the nine-story stone pagoda in Woljeongsa Temple in Pyeongchang is questionable and the composition pattern of the bronze mirror is hard to find on bronze mirrors with double dragons made in China, the manufacturing place of those bronze mirrors were examined. These bronze mirrors with double dragons were considered as bronze mirrors with double dragons made during the Goryeo dynasty adopting the Yao dynasty style composition pattern as aspects of the composition pattern belonged to Type I, and the detailed combination of patterns is hard to find in mirrors produced in China.

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.