• Title/Summary/Keyword: 2 order system

Search Result 14,811, Processing Time 0.053 seconds

Estimation and assessment of long-term drought outlook information using the long-term forecasting data (장기예보자료를 활용한 장기 가뭄전망정보 산정 및 평가)

  • So, Jae-Min;Oh, Taesuk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.691-701
    • /
    • 2017
  • The objective of this study is to evaluate the long-term drought outlook information based on long-term forecast data for the 2015 drought event. In order to estimate the Standardized Precipitation Index (SPI) for different durations (3-, 6-, 9-, 12-months), we used the observation precipitation of 59 Automated Synoptic Observing System (ASOS) sites, forecast and hindcast data of GloSea5. The Receiver Operating Characteristic (ROC) analysis and statistical analysis (Correlation Coefficient, CC; Root Mean Square Error, RMSE) were used to evaluate the utilization of drought outlook information for the forecast lead-times (1~6months). As a result of ROC analysis, ROC scores of SPI(3), SPI(6), SPI(9) and SPI(12) were estimated to be over 0.70 until the 2-, 3-, 4- and 5-months. The CC and RMSE values of SPI(3), SPI(6), SPI(9) and SPI(12) for forecast lead-time were estimated as (0.60, 0.87), (0.72, 0.95), (0.75, 0.95) and (0.77, 0.89) until the 2-, 4-, 5- and 6-months respectively.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

Effects of Low Temperature and Starvation on the Physicochemical Characteristics of Muscle of the Olive Flounder Paralichthys olivaceus (수온 및 절식에 따른 넙치(Paralichthys olivaceus) 근육의 물리화학적 특성 변화)

  • Shim, Kil Bo;Lee, So Jeong;Yoon, Ho Dong;Lim, Chi Won;Shin, Yun Kyung;Jeong, Min Hwan;Lee, Dong Gil;Park, Tae Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.430-437
    • /
    • 2012
  • The effects of low temperature and starvation on the physiochemical characteristics of the muscle of the olive flounder Paralichthys olivaceus, were examined. Fish were deprived of feed for 28 days at 2, 4, 6, 8, 10, 12, and $20^{\circ}C$ in order to establish suitable conditions for live fish transportation. Throughout most of the 4 weeks of feed restriction, the physiochemical characteristics of the muscle of olive flounder were found to be dependent on the acclimation temperature. The breaking strength of muscle did not show a significant reduction during feed restriction at 2 and $4^{\circ}C$. With increasing temperatures, however, the breaking strength of muscle differed significantly according to the individual and feed restriction period (P<0.05). The moisture content in muscle acclimated at 10, 12, and $20^{\circ}C$ increased steadily over the feed-restriction period, while the crude lipid content decreased during the same period (P<0.05). At water temperatures above $2-8^{\circ}C$, no significant differences were shown during the same period. After it reached 6, 8, 10, 12, and $20^{\circ}C$, the muscle had an accumulation of lactate, and a loss of ATP. There was no change in the lactate or ATP content during the feed restriction period at 2 and $4^{\circ}C$, although there were differences among the water temperature groups. These results clearly show that temperature can have an important influence on the of muscle of physiochemical characteristics of muscle during live fish transportation.

Partial Nitritation in an SBR Reactor by Alkalinity Control (알칼리도 제어에 의한 SBR 반응조에서의 부분아질산화)

  • Lee, Chang-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • In this study, major parameter of partial nitritation was investigated for the stable operation. In order to establish partial nitritation system, prevailing parameters such as temperature, BA (bicarbonate alkalinity) and pH were evaluated. As a result, it is inferred that appropriate bicarbonate alkalinity ratio (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) drives stable 50% partial nitritation at $32^{\circ}C$ and ambient temperature, respectively. Alkalinity ratio was proposed as new strategy for 50% partial nitritation without pH control in both temperature regimes. Because of the results, it was added amound of BA required only for 50% nitritation to inhibit nitratation. The effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio reached almost 100% when initial bicarbonate alkalinity ratios (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) were 6.8 (R1) and 6.7 (R2), respectively. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) results demonstrated that AOB was the dominant nitrifying bacteria and NOB was negligible after adopting process control.

Consideration on Changes of Density Stratification in Saemangeum Reservoir (새만금호 내 밀도 성층 변화 고찰)

  • Oh, Chan-Sung;Choi, Jung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.81-93
    • /
    • 2015
  • The comprehensive master plan in November 2010 on Saemangeum internal development has been released, and there is a need for complementary measures related to in-situ monitoring methods in order to acquire water temperature (T) and salinity (S) data. Thus, these data are monitored and analyzed by Korea Rural Community Corporation continuously. The purposes of current study are to evaluate the distributions of seasonal T and S, sigma-t, and stratification parameter and to compare annual stratification system in 2011 and 2012. To achieve these objectives, monthly vertical changes of T, S, and sigma-t, which are reproduced by a kriging technique, have been analyzed. In summer, the temperature difference between surface and bottom layers varies from 2 to $3^{\circ}C$, and the stratification of T is considerably weak. The stratification of S occurs abruptly within depth of EL. (-)5 to EL. (-)10 m. Therefore, stratification is induced by sudden increasing of water inflow amount due to a localized downpour during the rainy season, and these stratification processes are strongly influenced by inflowing a fresh water from watersheds in estuary environment.

Surficial Sediment Classification using Backscattered Amplitude Imagery of Multibeam Echo Sounder(300 kHz) (다중빔 음향 탐사시스템(300 kHz)의 후방산란 자료를 이용한 해저면 퇴적상 분류에 관한 연구)

  • Park, Yo-Sup;Lee, Sin-Je;Seo, Won-Jin;Gong, Gee-Soo;Han, Hyuk-Soo;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.747-761
    • /
    • 2008
  • In order to experiment the acoustic remote classification of seabed sediment, we achieved ground-truth data(i.e. video and grab samples, etc.) and developed post-processing for automatic classification procedure on the basis of 300 kHz MultiBeam Echo Sounder(MBES) backscattering data, which was acquired using KONGBERG Simrad EM3000 at Sock-Cho Port, East Sea of South Korea. Sonar signal and its classification performance were identified with geo-referenced video imagery with the aid of GIS (Geographic Information System). The depth range of research site was from 5 m to 22.7 m, and the backscattering amplitude showed from -36dB to -15dB. The mean grain sizes of sediment from equi-distanced sampling site(50 m interval) varied from 2.86$(\phi)$ to 0.88(\phi). To acquire the main feature for the seabed classification from backscattering amplitude of MBES, we evaluated the correlation factors between the backscattering amplitude and properties of sediment samples. The performance of seabed remote classification proposed was evaluated with comparing the correlation of human expert segmentation to automatic algorithm results. The cross-model perception error ratio on automatic classification algorithm shows 8.95% at rocky bottoms, and 2.06% at the area representing low mean grain size.

Changes of Nursing Activities on Patients with DNR Orders (DNR 결정 환자에 대한 간호사의 간호활동 변화)

  • Lee, Ji Yun;Jang, Jae In
    • Journal of Hospice and Palliative Care
    • /
    • v.20 no.1
    • /
    • pp.46-57
    • /
    • 2017
  • Purpose: The purpose of this study is to identify the changes to nursing activities of nurses on patients with DNR (Do-Not-Resuscitate) order and factors associated to the changes. Methods: Data were collected using a structured questionnaire for 173 nurses at general hospitals. Logistic regression analysis was performed on the data using SAS 9.4. Results: With 39 nursing activities, an average of 60.4 (34.9%) nurses reported an increase in the activities, 102.4 (59.2%) no change and 10.1 (5.9%) a drop. The activity increase was the greatest in the social area, and the physical area was where the activities decreased the most. The activity increase was associated knowledge competency (9 items), attitudes (2 items), practical competency (4 items) and work load (14 items were). Conclusion: To offer systematical care for DNR patients, it is necessary to expand nurses' knowledge through end-of-life education and adjust their workload and provide a support system at the department level.

Modeling the Citation Environment Factors Influencing Citation Motivations (인용동기와 인용환경요인 모형개발)

  • Kim Kap-Seon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.67-86
    • /
    • 1999
  • It needs to be considered that citing is net a static process but a dynamic process which is to produce to reproduce and to distribute knowledge by the interaction between societies surrounding the citer. This study begins by briefly acknowledging that citation is a universal practice in terms of establishing citer's own basis of research on the basis of the relation to previous studies and persuadeing potential citer to cite his/her research product. This study, however, is a preliminary attempt to examine the premise that although citing is a unversal practice. but citer motivations can be influenced by various citation environmental contexts surrounding the citer. This study presented general citation motivations derived from previous studies: (1) substantial motivations - conceptional and methodological citations 2) persuasive motivations - positive, applied, and negative citations, (3) perfunctory motivations - perfunctory and bibliographic citations, and (4) social relation motivations - personal connections and knowledge familiarity citations. In addition, this study identified citation environment factors affecting these citation motivations: (1) citer and documentation factor, (2) social and cultural environment, (3) information environment, and (4) international knowledge system environment. Each citation environment factor presented should be interpreted not as a separate factor, but rather as a close interrelation among these environment factors, Finally, the model of the citation environment factors developed in this study was discussed in the aspects of the relationship between citation motivations and their citation environment factors. This study suggested that further research should be conducted in order to examine these relationships more empirically and citation should be considered as a social product reflecting the interaction between citer and various citation environments.

  • PDF

Comparison of Thermal Protective Performance Test of Firefighter's Protective Clothing against Convection and radiation heat sources (대류와 복사 열원에 대한 특수방화복의 열보호 성능시험 비교)

  • Kim, Hae-Hyoung;Yoo, Seung-Joon;Park, Pyoung-Kyu;Kim, Young-Soo;Hong, Seung-Tae
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.17-23
    • /
    • 2017
  • The test methods using convection (flame) and radiation heat sources were compared to evaluate the thermal protective performance of the firefighter's protective clothing. In particular, the influence of the outer shell, mid-layer, and lining constituting the firefighter's protective clothing on the thermal protective performance was compared for convection and radiation heat sources. Tests for the thermal protective performance were carried out according to KS K ISO 9151 (convection), KS K ISO 6942 (radiation), and KS K ISO 17492 (convection and radiation). When tested under the same incident heat flux conditions ($80kW/m^2$), the heat transfer index ($t_{12}$ and $t_{24}$) for the radiation heat source was higher than that for the convection heat source. This means that radiation has a lesser effect than convection. For the convection heat source, the lining had the greatest effect on the thermal protective performance, followed by the mid-layer and the outer shell. On the other hand, for the radiation heat source, the effect on the thermal protective performance was great in the order of lining, outer shell, and mid-layer. Convection and radiation have fundamentally different mechanisms of heat transfer, and different heat sources can lead to different thermal protective performance results depending on the material composition. Therefore, to evaluate the thermal protective performance of the firefighter's protective clothing, it is important to test not only the convection heat source, but also the radiation heat source.