• Title/Summary/Keyword: 2 Dimensional Optical Frequency and Time

Search Result 14, Processing Time 0.025 seconds

Proposal of optical subscriber access network to eliminate multiple access interference using 2 dimensional optical frequency and time domain CDMA method (동시 사용자의 간섭을 제거한 광 주파수 및 시간 영역 광 CDMA를 이용한 광 가입자 망의 제안)

  • Park Sang-Jo;Kim Bong-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.161-166
    • /
    • 2006
  • In this paper, we propose optical subscriber access network to eliminate multiple access interference using 2 dimensional(D) optical frequency and time domain CDMA method. We have numerically analyzed the characteristics of proposed system. It is seen that the excess intensity noise is the major limiting factor to the system. Also it is seen that the number of simultaneous subscribers is four times as large as the conventional ID optical system under the same bit error ratio.

Parallel 3-dimensional optical interconnections using liquid crystal devices for B-ISDN electronic switching systems

  • Jeon, Ho-In;Cho, Doo-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 1997
  • In this paper, we propose a system design for a parallel3-dimensional optical interconnection network utilizing variable grating mode liquid crystal devices (VGM LCD's) which are optical transducers capable of performing intensity-to-spatial-frequency conversion. The proposed system performs real-time, reconfigurable, but blocking and nonbroadcasting 3-dimensional optical interconnections. The operating principles of the 3-D optical interconnection network are described, and some of the fundamental limitations are addressed. The system presented in this paper can be directly used as a configuration of switching elements for the 2-D optical perfect-shuffle dynamic interconnection network, as well as for a B-ISDN photonic switching system.

Low Cost Omnidirectional 2D Distance Sensor for Indoor Floor Mapping Applications

  • Kim, Joon Ha;Lee, Jun Ho
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.298-305
    • /
    • 2021
  • Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150-1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150-1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.

Terahertz Wave Transmission Properties of Metallic Periodic Structures Printed on a Photo-paper

  • Lee, Sung-Ho;Gee, Sang-Yoon;Kang, Chul;Kee, Chul-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.282-285
    • /
    • 2010
  • We printed a one-dimensional array of metallic wires and a two-dimensional array of metallic split ring resonators on a photo-paper by using a high-dots-per-inch resolution printer and an ink with silver nano-particles. The printed sample sizes are $1.0{\times}1.0cm^2$. The transmission measured by a terahertz time domain spectroscopy system shows that the arrays of wires and split ring resonators could act as polarizers and band-stop filters, respectively, in a terahertz frequency region.

Imaging with terahertz electromagnetic pulses (테라헤르츠 전자기파 펄스의 변조를 이용한 이미징의 해상도 연구)

  • Oh, Seung-Jae;Kang, Chul;Son, Ju-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • Images were acquired by the modulation of terahertz electromagnetic signals and compared by modulation frequencies. For the real-time acquisition of images a fast scanning method has been adopted utilizing a galvanometer. The acquired time domain waveforms were transformed into frequency domain data by fast Fourier transformations (FFT). We chose some frequency components to compare the resolution of images. The beam profiles at the focal position were measured by a knife-edge technique. Beam diameter was shown to decrease as the frequency increased. By scanning one- and two-dimensional samples a significant image enhancement was observed with the frequency increment. A nondesouctive imaging system using ㎔ electromagnetic pulses was also demonstrated.

Micro Vibration Measurement in a Latex Sample Mimicking the Tympanic Membrane Using Micro Vibro Tomography (고막을 모방한 라텍스 샘플의 미세진동 측정을 위한 마이크로 바이브로 토모그라피 시스템 개발)

  • Kwon, Jaehwan;Kim, Pilun;Jeon, Mansik;Kim, Jeehyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.23-27
    • /
    • 2019
  • In this paper, we propose a micro vibro tomography(MVT) method, that can be used to visualize two-dimensional cross-sectional images and micro-vibration tomographic images in real time in a non-contact and non-destructive manner. The proposed method is based on the optical coherence tomography(OCT) technique, with an additionally customized image processing algorithm. The proposed method can detect the micro-motions or vibrations in sample structures by measuring the phase shift variations in the sample structures. In this study, we show the potential capabilities of the proposed MVT system for measuring the micro-vibrations generated when sound waves in a frequency range of 2~5 kHz are applied to an $80-{\mu}m$ thick latex phantom, which mimics the changes in physical structure of the human tympanic membrane while hearing. Additionally, three-dimensional volumetric images of the MVT method were recorded to observe the surface morphological changes in the surface of the phantom sample which mimics the human tympanic membrane while hearing.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Photonic Crystal Based Bandpass Filter Design for WDM Communication Systems (WDM 시스템에 적합한 광결정 대역 통과 필터 설계)

  • Park, Dong-Soo;Kim, Sang-In;Park, Ik-Mo;Lim, Han-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.266-274
    • /
    • 2005
  • We have designed photonic crystal based bandpass filters whose characteristics are suitable for WDM communication system. The filters consist of coupled point defect resonators in two-dimensional photonic crystal. The frequency response of coupled resonators has been analyzed by the coupling of modes in time, from which the design parameters for the coupled resonator filters have been extracted. For the appropriate choice of the design parameters, each resonator is treated as a lumped L-C resonance circuit, and from the analogy between the equivalent circuit and the standard L-C filter circuits, the design parameters are simply determined from the table for general filter circuit design. Based on the determined design parameters, a photonic crystal based filter has been designed and its performance has been calculated using the finite-difference time-domain method. The designed filter shows a pass band of 50GHz and 0.5 dB in-band ripple, which is suitable for typical WDM communication systems with 100GHz channel spacing.

Fabrication of branched Ga2O3 nanowires by post annealing with Au seeds

  • Lee, Mi-Seon;Seo, Chang-Su;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.203-203
    • /
    • 2015
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nano-belts, and nano-dots. In contrast to typical vapor-liquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nano-structures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 nanowires (NWs) were synthesized by using radio-frequency magnetron sputtering method. The NWs were then coated by Au thin films and annealed under Ar or N2 gas enviroment with no supply of Gallium and Oxygen source. Several samples were prepared with varying the post annealing parameters such as gas environment annealing time, annealing temperature. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of branched Ga2O3 NWs will be reported.

  • PDF

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • Park, Sin-Yeong;Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF