• Title/Summary/Keyword: 2 Axis Force Sensor

Search Result 51, Processing Time 0.027 seconds

Active Stick Control using Frictional Torque Compensation

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.90.6-90
    • /
    • 2002
  • An active stick which has the variable force-feel characteristics is developed. A combined position and force control strategy is mechanized using a 2-axis built-in force sensor and LVDT. The 2-axis force sensor which measures the stick force felt by the operator is developed by using strain gages and appropriate instrumental amplifiers. A mathematical model of the active stick dynamics is derived, and compared with the experimental results. The frictional torque of the stick due to the mechanical contacts of several parts makes the experimental frequency responses to be dependent on the magnitude of excitation signal, and the precision closed loop control to be difficult. A friction observe...

  • PDF

Development of Force Sensors of Toes and Heel for Humanoid Robot's Intelligent Foot (인간형 로봇의 지능형 발의 발가락 및 뒤꿈치 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • In order to let the humanoid robot walk on the uneven terrains, the robot's foot should have the similar structure and function as human's. The intelligent foot should be made up of toes and heel. When it walks on the uneven terrains, the foot's sole senses the force and adjusts foot's position before robot losing his balance. In this paper, the force sensors of robot's intelligent foot for having the similar structure and function like human are developed. The heel 3-axis force/moment sensor and toe force sensors for humanoid robot's intelligent foot is developed, and the characteristic tests of them are carried out. As a result of characteristic test, the interference error of the heel 3-axis force/moment sensor is less than 2.2%. It is thought that the developed force sensors could be used to measure the reaction forces which is applied the toes and the heel of a humanoid robot.

Design and evaluation of small size six-axis force/torque sensor using parallel plate sturcture (병렬판구조를 이용한 소형 6축 힘/토크센서의 설계 및 특성평가)

  • Joo, Jin-Won;Na, Gi-Su;Kim, Gap-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.353-364
    • /
    • 1998
  • This paper describes the design processes and evaluation results of a small-sized six-axis force/torque sensor. The new six-axis force/torque sensor including S-type structure has been developed using a parallel plate structure as a basic sensing element. In order tominimize coupling errors, the location of strain gages has been determined based on the finite element analysis and the connections of strain gages have been made such that the bridge circuit with 4 strain gages becomes balanced. Several design modifications result in a similar strain sensitivity for six-axis forces and moments, and the reduced coupling errors of 2.6% FS between each forces and moments. Calibration test results show that the six-axis load cell developed which has light weight of 135g and the maximum capacities of 196 N in forces and 19.6 N.m in moments is estimated to be within 7.1% FS in coupling error.

Strain Analysis of a Six Axis Force-Torque Sensor Using Cross-Shaped Elastic Structure with Circular Holes (원구멍이 있는 십자형 탄성체를 가진 6축 힘, 토크 센서의 변형률 해석)

  • Kim, Joo-Yong;Kang, Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.5-14
    • /
    • 1999
  • The necessity of six axis force-torque sensors is well recognized in the fields of automatic fine assembly, deburring polishing, and automatic fish processing using robotic manipulators. The paper proposes a simple and compact elastic structure of the force-torque sensor which senses externally applied three force and three torque components. Rough surface strain distribution of the elastic structure is examined analytically, and then more accurate surface strain are obtained from finite element analysis. The compliance matrix which is a linear relationship between force components and strain measurements is obtained for the proposed sensor. Some basic principles of measuring 3 force and torque components are also presented.

  • PDF

Touchpad for Force and Location Sensing

  • Kim, Dong-Ki;Kim, Jong-Ho;Kwon, Hyun-Joon;Kwon, Young-Ha
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.722-728
    • /
    • 2010
  • This paper presents the design and fabrication model of a touchpad based on a contact-resistance-type force sensor. The touchpad works as a touch input device, which can sense contact location and contact force simultaneously. The touchpad is 40 mm wide and 40 mm long. The touchpad is fabricated by using a simple screen printing technique. The contact location is evaluated by the calibration setup, which has a load cell and three-axis stages. The location error is approximately 4 mm with respect to x-axis and y-axis directions. The force response of the fabricated touchpad is obtained at three points by loading and unloading of the probe. The touchpad can detect loads from 0 N to 2 N. The touchpad shows a hysteresis error rate of about 11% and uniformity error rate of about 3%.

Design of a 6-axis Compliance Device with F/T Sensing for Position/Force Control (위치/힘 동시제어를 위한 F/T측정 기능을 갖는 6축 순응기구 설계)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • In this paper, the design of a novel 6-axis compliance device with force/torque sensing capability and the experiment results on force measurement are presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, the force control method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment for more stable force control. The proposed compliance device is designed to have a diagonal stiffness matrix at the tip and uses strain gauge measurement which is robust to dust and oil. The measurement circuit is designed with low-cost IC chips however the force resolution is 0.04N.

Development of a Tool Deflection Compensation System for Precision End-milling (고정밀 밀링가공을 위한 공구처짐 보정시스템 개발)

  • 최종근;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.42-46
    • /
    • 1993
  • This paper presents development of a pratical tool deflection compensation system in order to reduce the machining error by the tool deflection in the end-milling process. The system is a tool adapter which includes 2-axis force sensor for detecting tool deflection and 2-axis tool tilting device for adjusting tool position through computer interface in on-line process. In experiments, it is revealed that the force sensor applying parallel plate principle and strain gauge is proper to obtain dynamic process signal, and the tilting device using stepping motor and cam drive mechanism is suitable to have necessary action. By the system and control algorithm, it is possible to get precise machining surface profile without excessive machining error and overcut generated due to increased cutting force in more productive machining condition.

  • PDF

Design of Link-type Thumb Rehabilitation Robot for Finger Patients (손가락환자를 위한 링크형 엄지손가락 재활로봇 설계)

  • Kim, Hyeon Min;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.709-716
    • /
    • 2013
  • Rehabilitation of finger patients requires that the patients exercise their hands and fingers for proper functioning to return. A thumb rehabilitation robot, equipped with a two-axis force sensor, can prevent injury to the thumb by monitoring the applied pulling force. In this paper, we describe a link-type thumb rehabilitation robot designed for patients' thumb rehabilitation exercise. Tests of the manufactured link-type thumb rehabilitation robot were performed on normal male patients. Our results show that the robot can be used for flexibility and muscle-strength rehabilitation exercises for a patient's thumb.

Development of Multi-Degree of Freedom Carbon Fiber Plate Force/Torque Sensor (다자유도 탄소섬유판 힘/토크 센서 개발)

  • Lee, Dong-Hyeok;Kim, Min-Gyu;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • A force/torque sensor using carbon fiber plate was designed and developed to make the sensor be able to measure a wide range of multi degree of force and torque. Using carbon fiber plate of 0.3 mm thickness, the sensor was designed and developed, which has a ${\mu}N$ level order of resolution and about 0.01 N ~ 390 N of wide measurement range. The elastic deformation part has a tripod plate structure and strain gauges are attached on the part to detect the force/torque. The coefficient of determination for the sensor is over 0.955 by the calibration experiment so that the linearity of the sensor is confirmed to be good. Also, experiments on applying 0.005 ~ 40 kg (0.05 ~ 390 N) to each axis were implemented and the sensor is proved to be safe under a high load. Finally, to verify the function calculating the direction of load vector, the directions of various load vectors which have the same magnitude but different directions and the directions of the calculated load vectors are compared and analyzed to accord well.

Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor (로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법)

  • Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.