• Title/Summary/Keyword: 2 스풀 터보팬엔진

Search Result 8, Processing Time 0.018 seconds

A Study on EASY5 Modeling for Performance Analysis of Turbofan Engine (터보팬 엔진의 성능해석을 위한 EASY5 모델링에 관한 연구)

  • 공창덕;강명철;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.29-30
    • /
    • 2002
  • 본 연구에서는 Boeing사에서 개발한 EASY5 프로그램을 이용하여 터보팬 엔진을 모델링하고 성능해석을 수행하였다. 연구대상 엔진인 BR715-56 엔진은 추력이 20,000lbf급인 2 스풀 터보팬 엔진으로 분리흐름(Separate Flow) 형이다. 엔진은 팬, 압축기, 연소기, 저압터어빈, 압축기터어빈, 팬 노즐 및 Core 노즐로 구성되어 있으며 Station No.는 Fig 1과 같다. 연구에 사용된 EASY5 프로그램은 동역학 시스템을 모델링하고 해석하는 프로그램으로, 제공되는 라이브러리 구성품을 이용하여 보다 쉽게 동적 시스템을 모델링할 수 있다. 또한 Steady-State Solver를 이용하여 정적 평형상태를 빠른 시간에 찾을 수 있어 보다 빠른 해석을 수행할 수 있다. 또한 해석된 동역학 모델을 FORTRAN이나 C 코드로 생성하여 제공함으로써 프로그램의 수정이나 보완이 용이하고, 제공되지 않은 시스템의 라이브러리 구성품의 경우에는 사용자 정의 코드를 만들어 사용함으로써 프로그램의 기능을 확장할 수 있다. EASy5는 대표적인 제어기 설계 소프트웨어인 MATLAB, MATRIX-x와의 호환도 가능하며 NASTRAN등과 같은 유한요소 해석 프로그램과의 데이터 공유도 가능하여 보다 폭 넓은 시스템 모델링과 제어기 설계도 쉽게 할 수 있다.

  • PDF

Study on Condition Monitoring of 2-Spool Turbofan Engine Using Non-Linear GPA(Gas Path Analysis) Method and Genetic Algorithms (2 스풀 터보팬 엔진의 비선형 가스경로 기법과 유전자 알고리즘을 이용한 상태진단 비교연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.71-83
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Steady-state Performance Simulation and Operation Diagnosis of a 2-spool Separate Flow Type Turbofan Engine (2스풀 분리 배기 방식 엔진의 정상상태 성능모사 및 작동 진단)

  • Choo, KyoSeung;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2019
  • There is a growing interest in engine diagnostic technology for gas turbine engines. An engine simulation program, precisely simulating the engine performance, is required in order to apply it to the engine diagnosis technology for engine health monitoring. In particular, the simulation program can predict not only design point performance but also off-design point and partial load performance in accurate. So the engine simulation program for the 2-spool separate flow type turbofan engine was developed and the JT9D-7R4G engine of PW(Pratt & Whitney) was analyzed. The steady-sate performance analysis is conducted at both design and off-design points in flight path and the differences between analysis results of takeoff and cruise conditions are compared. The effect of Reynold's correction method was analyzed as a scaling method of the engine component performance. The simulation results was compared with NPSS.

Study on Fault Diagnostics Considering Sensor Noise and Bias of Mixed Flow Type 2-Spool Turbofan Engine using Non-Linear Gas Path Analysis Method and Genetic Algorithms (혼합배기가스형 2 스풀 터보팬 엔진의 가스경로 기법과 유전자 알고리즘 이용한 센서 노이즈 및 바이어스를 고려한 고장진단 연구)

  • Kong, Changduk;Kang, Myoungcheol;Park, Gwanglim
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-18
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

Study on Component Map Generation and Performance Simulation of 2-spool Separate Flow Type Turbofan Engine Using SIMULINK (SIMULINK를 이용한 2-스풀 분리형 배기방식 터보팬 엔진의 구성품 성능맵 생성 및 성능모사에 관한 연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate-flow turbofan engine named (BR715-56) which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK (SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석)

  • Kong, Chang-Duk;Park, Gil-Su;Lee, Kyung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.219-224
    • /
    • 2012
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate jet turbofan engine named BR715-56 which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

  • PDF

Steady-State Performance Simulation and Engine Condition Monitoring for 2-Spool Separate Flow Type Turbofan Engine (2-스풀 분리배기 방식 터보팬 엔진의 성능모사 및 진단에 관한 연구)

  • Gong, Chang Deok;Gang, Myeong Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.60-68
    • /
    • 2003
  • In this study, a steady state performance analysis program was developed for a turbofan engine, and its performance was analyzed at installed conditions. For the purpose of evaluation, the developed program was compared with the performance data provided by the engine manufacturer. It was confirmed that the developed program was reliable because the results by the developed program were well agreed with those by the engine manufacturer within 3.5%. The non-linear GPA(Gas Path Analysis) program for performance diagnostics were developed, and selection of optimal measurement variables was studied. Furthermore, in order to investigate effects of the number and the kind of measurement variables, the non-linear GPA was analyzed with various measurement sets. Finally, the measurement parameters selected in the previous step were applied to the fault detection analysis of the 2-spool separate flow type turbofan engine.