• Title/Summary/Keyword: 2축 짐벌식 안테나

Search Result 7, Processing Time 0.02 seconds

Structural Analysis of Spaceborne Two-axis Gimbal-type Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 안테나의 구조해석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2018
  • A two-axis gimbal-type antenna for a Compact Advanced Satellite (CAS) is used to efficiently transmit high resolution image data to a ground station. In this study, we designed the structure of a two-axis gimbal-type antenna while applying a launch lock device to secure its structural safety under a launch environment. To validate the effectiveness of the structural design, a structural analysis of the antenna was performed. First, a modal analysis was performed to investigate the dynamic responses of the antenna with and without the mechanical constraints of the launch lock device. In addition, a quasi-static analysis was performed to confirm the structural safety of the antenna structure and bolt I/Fs between the antenna base and the satellite. The suitable range of constraint force on the launch lock device was also determined to ensure the structural safety and mechanical gapping of the ball & socket interfaces, which places multi-constraints on the azimuth and elevation stage of the antenna.

Characteristics Measurement of Hyperelastic SMA Gear for Micro-jitter Attenuation of X-band Antenna of Compact Advanced Satellite (차세대중형위성 적용가능성 검토를 위한 X-band 안테나의 미소진동 저감용 초탄성 SMA 기어의 특성 측정)

  • Jeon, Young-Hyeon;Back, Hyeon-Gyu;Song, Da-Il;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.784-793
    • /
    • 2017
  • A two-axis gimbal-type X-band antenna mounted on an observation satellite can efficiently transmit high-capacity image data to a ground station regardless of both the satellite position and the orbital motion. However, this X-band antenna induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. Therefore, to achieve the high-resolution image quality from the observation satellite, micro-jitters have been required to be isolated. In this study, to resolve aforementioned drawback, we proposed blade gear using a shape memory alloy (SMA) applied to azimuth stage of X-band antenna. To investigate the rotational basic characteristics of the proposed SMA blade gear, we performed rotational static loading test. Futhermore, to evaluate the cycle to failure of the gear, accelerated life test was conducted. The temperature test was conducted to confirm rotational basic characteristics at various temperature conditions. To verify the isolation performance for micro-jitter, we performed micro-jitter measurement test.

Characteristics Analysis of a Pseudoelastic SMA Mesh Washer Gear for Jitter Attenuation of Stepper-actuated Gimbal-type Antennas (스텝모터 구동형 짐벌 안테나의 미소진동저감을 위한 초탄성 형상기억합금 메쉬 와셔 기어의 기본특성 분석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.46-58
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna is widely used to transmit bulk image data from high-resolution observation satellites. However, undesirable microvibrations induced by driving the antenna should be attenuated, because they are a main cause of image-quality degradation of the observation satellite. In this study, a pseudoelastic memory alloy (SMA) gear was proposed to attenuate the microvibrations by driving the antenna in an azimuth angle. In addition, the proposed gear can overcome the limitations of the conventional titanium blade gear, which is not still enough and is vulnerable to plastic deformations under excessive torque. To investigate the basic characteristics of the proposed SMA mesh washer gear, a static load test was performed on the thickness of the SMA mesh washer and the rotation of the gear. Moreover, The microvibration measurement test demonstrated that the SMA mesh washer gear proposed in this study is effective for microvibration attenuation.

Thermal Design and Analysis for Two-Axis Gimbal-Type X-Band Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 X-밴드 안테나의 열설계 및 궤도 열해석)

  • Chae, Bong-Geon;You, Chang-Mok;Chang, Su-Young;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.306-314
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna for CAS(Compact Advanced Satellite) transmits large amount of image data to ground station regardless of satellite attitude and orbital motion. This antenna mounted on the external surface of the satellite is directly exposed to the extreme space with thermal environment during the orbital operation. Therefore, a proper thermal design is needed to maintain the antenna itself as well as other main components within allowable temperature range. In this study, the thermal design effectiveness of two-axis gimbal X-band antenna was verified through the thermal analysis. In addition, required power and duty cycle of heater were estimated through the thermal analysis under conditions of system level thermal vacuum test and on-orbit thermal environment. The thermal analysis results indicated that all the main components of X-band antenna satisfy the allowable temperature requirement.

Thermal Analysis of APD Electronics for Activation of a Spaceborne X-band 2-axis Antenna (위성 데이터 전송용 2축 짐벌식 X-band 안테나 구동용 전장품 APD 열 해석)

  • Ha, Heon-Woo;Kang, Soo-Jin;Kim, Tae-Hong;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • The thermal analysis of electronic equipment is required to predict the reliability of electronic equipment being loaded on a satellite. The transient heat transfer of electronic equipment that was developed recently has been generated using a large-scale integration circuit. If there is a transient heat transfer between EEE(Electric, Electronic and Electro mechanical) parts, it may lead to failure the satellite mission. In this study, we performed the thermal design and analysis for reliability of APD(Antenna Pointing Driver) electronics for activation of a spaceborne X-band 2-axis antenna. The EEE parts were designed using a thermal mathematical model without the thermal mitigation element. In addition, thermal analysis was performed based on the worst case for verifying the reliability of EEE parts. For the thermal analysis results, the thermal stability of electronic equipment has been demonstrated by satisfying the de-rating junction temperature.

Estimating Fatigue Life of APD Electronic Equipment for Activation of a Spaceborne X-band 2-axis Antenna (2축 짐벌식 X-band 안테나 구동용 전장품 APD 제어보드의 피로수명 평가)

  • Jeon, Young-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • While a satellite is carried into orbit by a launch vehicle, it is exposed to the severe launch environment with random vibrations and shock. Accordingly, these vibration sources affect electronic equipment, particularly the printed circuit board (PCB) in the satellite. When the launch load impacts the PCB, it causes negative behavior. This causes perpendicular bending around the boundary of fixation points that finally leads to the failure of solder joints, lead wires, and PCB cracks. To overcome these issues, the electronic equipment design must meet reliability requirements. In this paper, Steinberg's method is used to derive allowable and maximum deflection to verify design from a life perspective concerning the control board of the Antenna Pointing Driver (APD) mounted on KOMPSAT-3.

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.