• Title/Summary/Keyword: 2차 재 순환 영역

Search Result 15, Processing Time 0.023 seconds

공기순환형 구조체 축열 공조시스템

  • 이정재;정광섭
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.8
    • /
    • pp.15-18
    • /
    • 2002
  • 축열 공조방식 중 현재 가장 많이 보급되고 있는 방식은 빙축열 방식과 수축열 방식이다. 본래 축열식 공조는 열원 용량을 감소하고, 값싼 심야전력을 통해서 운전비용(running cost)의 절감을 목적으로 하지만, 열을 저장하기 위한 "축열조"가 필요하므로, 필연적으로 초기투자비(intial cost)의 증가를 동반하며, 기존의 건물에는 쉽게 적용할 수 없는 등의 문제점이 있다. 따라서 축열을 위한 초기비용을 증가시키지 않는 축열식 공조방식으로서 건축물 자체가 가지는 높은 열용량에 착안하여 구조체 축열에 관한 연구가 최근 활성화되고 있다. 구조체 축열은 건축물 그 자체를 축열 매체로 이용하기 때문에 별도의 축열조가 필요 없고, 구조체 로부터의 "복사"형태로 거주영역에 직접적으로 작용하여 실내의 온열환경을 향상시킬 수 있다. 이 때문에 2차측 공조기의 용량을 절감시킬 수 있고, 축열 부위에서의 열반송이 필요없는 등, 구조체 축열 시스템은 기존의 빙축열과 수축열 방식에서는 없는 여러가지 장점을 가지고 있다. 구조체 축열 공조시스템은 기존의 공조시스템 중에서 급기구 부위만을 변경하여 주간에서 종래의 공조시스템과 같이 실내로 공조 공기를 급기하고, 야간에는 급기구에 설치된 댐퍼를 조절하여 천정면으로 공조 공기를 급기함으로써 구조체에 열을 축열시키는 방안이다. 본 시스템은 기존의 설비시스템을 이용하여 건축물의 구조체를 축열, 공조개시전 및 주간의 부하를 대폭 줄임으로써 에너지를 절감시킬 수 있다는 장점을 갖는다. 따라서 구조체 축열 공조시스템은 "지구환경 유지.전력부하 평준화.안전성.에너지 절약.비용절감.쾌적성"의 모든 조건을 만족시키는 유력한 차세대 공조 방식이 될 것으로 판단되며, 본 보에서는 공기순환형 구조체 축열시스템을 소개하고자 한다.

  • PDF

Flow Characteristics of secondary recirculation region for using Stereoscopic PIV in a Liquid Fuel Ramjet Combustor (Stereoscopic PIV 속도장 측정기법을 이용한 액체 램제트 연소기에서의 2차 재순환 유동장 측정)

  • Kim S. J.;Choi J. H.;Park C. W.;Sohn C. h.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.115-120
    • /
    • 2003
  • Flow characteristics at secondary recirculation zone in a liquid fuel ramjet combustor are investigated using CFD and 3-D Stereoscopic PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vanes were installed in each rectangular inlet to improve the flow stability. The tested angle of the air intakes was 60 degree. The experiments were performed in the water tunnel test with the same Reynolds number in the case of Mach0.3 at inlet. Both computational and experimental results showed the secondary recirculation flow occurred at the front junction of inlet main stream and combustor chamber. The size of secondary recirculation region increased with upon closer center of axial combustor. Since the performance of combustor depends on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the recirculation size as frame holder.

  • PDF

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.

Effects of Multi-hole Baffle Thickness on Flow and Mixing Characteristics of Micro Combustor (다공배플 두께가 마이크로 연소기의 유동 및 혼합특성에 미치는 영향)

  • Kim, Won Hyun;Park, Tae Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.623-629
    • /
    • 2017
  • Flow structure and mixing characteristics in a micro combustor with a multi-hole baffle were numerically studied using the Reynolds stress model. The multi-hole baffle has geometrical features to produce multiple three-dimensional vortices inside combustion chamber. When the thickness of the baffle's geometrical factors changes, variations of vortical structures occur variously. Among these vortices, the vortex generated from the fuel stream exerts a critical influence on the mixing enhancement. The three-dimensional vortical structure, in its development state, was strongly dependent on the baffle thickness. In particular, as the baffle thickness decreases to values less than the diameter of the fuel hole, the jet stream in baffle holes changes from the parabolic to saddleback profile type. The sizes of recirculation zones inside combustion chamber and the mixing state were closely affected by the structure of the jet streams.

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF