• Title/Summary/Keyword: 2차원 X-Y 테이블

Search Result 7, Processing Time 0.024 seconds

Realization of a two dimensional Haptic Interfacing Apparatus for Virtual Object Recognition Experiments (가상물체 인식 실험을 위한 2차원 Haptic 인터페이스 장치의 구현)

  • Lee, Joon-Cheol;Jang, Tae-Jeong
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.415-421
    • /
    • 1999
  • In this paper, a 2D X-Y table, two axes of which are symmetrical, and a force sensing device are constructed, which comprise a 2D haptic interfacing apparatus. Two DC motors are used for actuating the two axes of the table and two precision encoders for sensing the position of each axis. Four PZTs are used for sensing the direction and the magnitude of the 2D force applied to the force sensing device by the user. The performance of the 2D haptic interface device is tested by 2D virtual object recognition experiments.

  • PDF

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

A method of Level of Details control table for 3D point density scalability in Video based Point Cloud Compression (V-PCC 기반 3차원 포인트 밀도 확장성을 위한 LoD 제어 테이블 방법)

  • Im, Jiheon;Kim, Junsik;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.178-181
    • /
    • 2019
  • 포인트 클라우드 콘텐츠는 3D 포인트 집합으로 이루어진 3D 데이터로, 일반적으로 3D 포인트 클라우드는 하나의 객체를 표현하기 위하여 수십, 수백만 개의 3차원 포인트(Point) 데이터가 필요하며, 각 포인트 데이터는 3차원 좌표계의 (x, y, z)좌표와 포인트의 색(color), 반사율(reflectance), 법선벡터(normal) 등과 같은 속성(attribute)으로 구성되어 있다. 따라서 기존 2D영상보다 한 단계 높은 차원과 다양한 속성으로 구성된 포인트 클라우드를 사용자에게 제공하기 위해서는 고효율의 인코딩/디코딩 기술 연구가 필요하며, 다양한 대역폭, 장치 및 관심 영역에 따라 차별화된 서비스를 제공하기 위한 품질 확장성 기능의 개발이 요구된다. 이에 본 논문에서는 포인트 클라우드 압축에 사용되는 V-PCC에서 3차원 미디어인 포인트 클라우드의 3D 공간 내 포인트 간의 밀도를 변경하여, 새로운 품질 변화를 달성하고 비트전송률 변경을 추가 지원하는 방법을 제시하였다.

  • PDF

A Phantom study of Displacement of Three Dimensional Volume Rendering for Clinical Application in Radiation Treatment Planning (방사선치료계획의 임상적용을 위한 3차원 볼륨렌더링영상 체적변화의 모형연구)

  • Goo, Eun-Hoe;Lee, Jae-Seung;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.280-288
    • /
    • 2009
  • This study is to design and produce a detailed model for volume variety of three dimensional reconstruction images and to evaluate the changes of volume, area and the length of the model in the process of the reconstruction of RTP system. CT simulation was operated at the thickness of 1.25, 2.5, 5, 10mm and average, standard deviation of scan direction(X), thickness(Y), table movement direction(Z), area(A), and volume(V) of the three dimensional volume rendering, were measured according to the shape and thickness of the phantoms. As a result, at the thickness of 1.25, 2.5min, the phantom's shape decreased maximum 0.13cm(p<0.05) to the direction of X, Y, Z and length, area, volume decreased 0.1cm, $0.8cm^2$, $3.99cm^3$ which led to an approximate image of the phantoms. However, at the thickness of 5, 10mm, the phantom of the original form decreased maximum 0.58cm(p<0.05) and volume, area, length decreased maximum 0.45cm, $8.21cm^2$, $11.03cm^3$. Volume varieties according to the thickness and shape of the phantoms have occurred diversely, when CT simulation was operated, and it is considered that a clinically appropriate volume rendering can be obtained only when the thickness is below 3mm.

Efficient All-to-All Personalized Communication Algorithms in Wormhole Networks (웜홀 방식 망에서의 효율적인 완전교환 통신 알고리즘)

  • Kim, Si-Gwan;Maeng, Seung-Ryoul;Cho, Jung-Wan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.5
    • /
    • pp.464-474
    • /
    • 2000
  • All-to-all personalized communication, or complete exchange, is at the heart of numerous applications, such as matrix transposition, fast Fourier Transform(FFT), and distributed table lookup.We present an efficient all-to-all personalized communication algorithm for a 2D torus inwormhole-routed networks. Our complete exchange algorithm adopts divide-and-conquer approach toreduce the number of start-up latency significantly, which is a good metric for network performancein wormhole networks. First, we divide the whole network into 2x2 basic cells, After speciallydesignated nodes called master nodes have collected messages to transmit to the rest of the basic cell,only master nodes perform complete exchange with reduced network size, N/2 x N/2. When finishedwith this complete exchange in master nodes, these nodes distribute messages to the rest of the masternode, which results in the desired complete exchange communication. After we present our algorithms,we analyze time complexities and compare our algorithms with several previous algorithms. And weshow that our algorithm is efficient by a factor of 2 in the required start-up time which means thatour algorithm is suitable for wormhole-routed networks.

  • PDF

A Study on Depth Data Extraction for Object Based on Camera Calibration of Known Patterns (기지 패턴의 카메라 Calibration에 기반한 물체의 깊이 데이터 추출에 관한 연구)

  • 조현우;서경호;김태효
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.173-176
    • /
    • 2001
  • In this thesis, a new measurement system is implemented for depth data extraction based on the camera calibration of the known pattern. The relation between 3D world coordinate and 2D image coordinate is analyzed. A new camera calibration algorithm is established from the analysis and then, the internal variables and external variables of the CCD camera are obtained. Suppose that the measurement plane is horizontal plane, from the 2D plane equation and coordinate transformation equation the approximation values corresponding minimum values using Newton-Rabbson method is obtained and they are stored into the look-up table for real time processing . A slit laser light is projected onto the object, and a 2D image obtained on the x-z plane in the measurement system. A 3D shape image can be obtained as the 2D (x-z)images are continuously acquired, during the object is moving to the y direction. The 3D shape images are displayed on computer monitor by use of OpenGL software. In a measuremental result, we found that the resolution of pixels have $\pm$ 1% of error in depth data. It seems that the error components are due to the vibration of mechanic and optical system. We expect that the measurement system need some of mechanic stability and precision optical system in order to improve the system.

  • PDF

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.