Purpose: To simulate and measure the signal intensity of various tissues near bone interface in 2D and 3D neurological MR images. Materials and Methods: In neurological proton density (PD) weighted images, every component in the head including cerebrospinal fluid (CSF), muscle and scalp, with the exception of bone, are visualised. It is possible to acquire images in 2D or 3D. A 2D fast spin-echo (FSE) sequence is chosen for the 2D acquisition and a 3D gradient-echo (GE) sequence is chosen for the 3D acquisition. To find out the signal intensities of CSF, muscle and fat (or scalp) for the 2D spin-echo(SE) and 3D gradient-echo (GE) imaging sequences, the theoretical signal intensities for 2D SE and 3D GE were calculated. For the 2D fast spin-echo (FSE) sequence, to produce the PD weighted image, long TR (4000 ms) and short TE$_{eff}$ (22 ms) were employed. For the 3D GE sequence, low flip angle (8$^{\circ}$) with short TR (35 ms) and short TE (3 ms) was used to produce the PD weighted contrast. Results: The 2D FSE sequence has CSF, muscle and scalp with superior image contrast and SNR of 39 - 57 while the 3D GE sequence has CSF, muscle and scalp with broadly similar image contrast and SNR of 26 - 33. SNR in the FSE image were better than those in the GE image and the skull edges appeared very clearly in the FSE image due to the edge enhancement effect in the FSE sequence. Furthermore, the contrast between CSF, muscle and scalp in the 2D FSE image was significantly better than in the 3D GE image, due to the strong signal intensities (or SNR) from CSF, muscle and scalp and enhanced edges of CSF. Conclusion: The signal intensity of various tissues near bone interface in neurological MR images has been simulated and measured. Both the simulation and imaging of the 2D SE and 3D GE sequences have CSF, fat and muscle with broadly similar image intensity and SNR's and have succeeded in getting all tissues about the same signal. However, in the 2D FSE sequence, image contrast between CSF, muscle and scalp was good and SNR was relatively high, imaging time was relatively short.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.502-504
/
2001
본 논문에서는 영상기반 모델링에서 3차원의 기하학적 제약을 이용한 모델링을 다루고 있다. 기존에 이러한 연구가 많이 진행되어져 왔으나, 여기에서는 새로운 방법에 의한 모델링을 시도하였다. 이러한 접근방법은 이해하기가 쉽고, 편리하며, 간단한 모델링에 적용이 용이하다. 또한, 영상평면 정보와 3차원의 정보를 가지고 있기 때문에 기존의 3차원 복원 이론과 혼합하여 적용할 수 있다. 영상기반 모델링(IBM, Image Based Modeling)의 핵심은 2차원 영상에서 사라진 깊이 정보를 어떻게 찾는가에 있다. 기존에는 3차원 복원을 위하여 투영된 영상평면의 점을 이용하거나, 이미지 상에서의 소실점을 찾거나, 2차원의 벡터와 3차원의 공간 좌표의 특정한 평면에 놓여있는 벡터와의 관계를 이용하여 깊이 정보를 복원하였다. 이러한 접근 방법은 사용자가 선택한 2차원 좌표로부터 3차원 좌표를 구하는 것이다. 본 논문에서는 기존의 방법과 다르게 3차원 원시 기하모델의 제약을 이용하여 사용자가 3차원 원시 기하모델을 2차원 영상에 투영하고, 그 정보를 이용하여 영상의 3차원 정보를 찾아 나가는 방법을 소개한다. 또한, 선형적인 최적화 기능을 넣어 관사 모델을 구하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.147-150
/
2021
최근 컴퓨터 그래픽 기술이 발전함에 따라 가상으로 만들어낸 객체와 현실 객체 사이의 분간이 어려워지고 있으며, AR/VR/XR 등의 서비스를 위해 현실 객체를 컴퓨터 그래픽으로 표현하는 기술의 연구가 활발히 진행되고 있다. 포인트 클라우드는 현실 객체를 표현하는 기술 중의 하나로 객체의 표면을 수많은 3차원의 점으로 표현하며, 2차원 영상보다 더욱 거대한 데이터 크기를 가지게 된다. 이를 다양한 서비스에 응용하기 위해서는 3차원 데이터의 특징에 맞는 고효율의 압축 기술이 필요하며, 국제표준기구인 MPEG에서는 연속적인 움직임을 가지는 동적 포인트 클라우드를 2차원 평면으로 투영하여 비디오 코덱을 사용해 압축하는 Video-based Point Cloud Compression (V-PCC) 기술이 연구되고 있다. 포인트 클라우드를 2차원 평면에 투영하는 방식은 점유 맵 (Occupancy Map), 기하 영상 (Geometry Image), 속성 영상 (Attribute Image) 등의 2차원 정보와 보조 정보를 사용해 압축을 진행하고, 부호화 과정에서는 보조 정보와 2차원 영상들의 정보를 사용해 3차원 포인트 클라우드를 재구성한다. 2차원 영상을 사용해 포인트 클라우드를 생성하는 특징 때문에 압축 과정에서 발생하는 영상 정보의 열화는 포인트 클라우드의 품질에 영향을 미친다. 이와 마찬가지로 추가적인 기술을 사용한 2차원 영상 정보의 향상으로 포인트 클라우드의 품질을 향상할 수 있을 것으로 예상된다. 이에 본 논문은 V-PCC 기술에서 생성되는 영상 정보에 2차원 보간 (Interpolation) 기술을 적용하여 기존의 영상 정보에 포함되지 않은 추가적인 포인트를 생성하는 것으로 재구성되는 포인트 클라우드의 밀도를 증가시키고 그 영향을 분석하고자 한다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.10
no.2
/
pp.53-66
/
2006
Recent technique has shown high interest in 3D stereoscopic image, one out of high immersion appearance techniques. Unlike general 2D image, 3D stereoscopic image is generated by 3D geometric information. Therefore, the lack of 3D geometric information sometimes imposes restrictions or makes editing more tedious. We propose a new unsupervised technique aimed to generate stereoscopic image which is estimated by depth-map information using image-based modeling from a single input image. The proposed system is implemented as the Adobe Photoshop(R) plug-in for considering generality and expandability, and also supports a preview function of interactive 3D stereoscopic image to determine stereoscopic view of high quality.
2차원 영상을 3차원 모델 영상으로 변환하는 방식이 다양하게 발전해오고 있다. 딥러닝의 발전 중 특히 GAN의 다양한 연구는 2차원 영상의 생성뿐만 아니라 다양한 3차원 영상의 생성에도 진전을 보였다. 본 고에서는 2차원 영상을 3차원 영상으로 변환하는 연구의 필요성을 바탕으로 관련 연구의 내용과 동향을 분석하였다. 주요 내용으로는 딥러닝 기반의 3차원 객체인식, 2D로부터 3D 변환을 위한 신경망에 대한 연구, 생성적 기법을 적용한 연구, 3D 모델링 도구 등이 포함된다. 관련 연구의 전반적인 흐름을 고려했을 때 향후 3D 모델링의 정교한 표현력 향상, 고속의 고해상도 렌더링, 편리한 온라인 접근성 등을 예상하게 된다. 관련 산업 종사자들에게는 생성시간의 단축을 가져올 수 있고 일반인은 전문적인 3D 기술이 없어도 우수한 3D 모델을 생성하고 활용할 수 있을 것으로 기대한다.
Journal of the Korea Society of Computer and Information
/
v.7
no.4
/
pp.121-126
/
2002
The stereoscopic image is that we can see it closer than a real thing compared to 2D image, and it has influence on human's vision information because it is more natural method to feel connections between the spaces of the image and himself. There are several method convert from 2d image to 3d image. But, in this paper, we are propose the image separate algorithm of continuous input system through a spatial analysis, not be done with 2D still image. Additionally, we will adapt to the moving vector which has been used in MPEG. In this experiment, we obtained the effect of 3D image.
Jung, Jun Young;Choi, Ick Chang;Yun, Byoung-Ju;Kim, Hyun Deok
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.323-324
/
2013
본 논문에서는 2차원 X-ray 영상을 이용하여 3차원 영상을 얻기 위한 전처리 과정으로 2차원 X-ray 영상에서 원하는 뼈 영상을 분할하기 위한 능동적 대퇴골 분할 기법에 대해 제안하고 구현하였다. X-ray 영상의 주된 화질 저하 요인인 잡음을 제거하고 에지 및 밝기 검출을 통하여 정확하고 빠른 뼈 영상 분할 기법을 구현하였고 대퇴골 영상을 통해 검증하였다. 이를 통해 최소한의 2차원 X-ray 영상을 이용하여 3차원 뼈 모델링을 구현하는데 필요한 뼈 영상을 획득하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.892-894
/
2005
본 논문에서는 스테레오 영상에서 깊이 정보를 추출하여 사람의 자세를 학습된 2차원 깊이 영상들의 선형 결함으로 표현하여 3차원 인체 모델을 재구성하는 방법을 제안한다. 한 장의 2차원 깊이 영상으로 최소 제곱법을 이용하여 프로토타입 깊이 영상의 선형 결합으로 표현되는 최적의 계수를 찾을 수 있다. 입력된 깊이 영상의 3차원 인체 모델은 프로토타입 깊이 영상에서 예측된 계수를 적용하여 생성한다. 학습 단계에서는 데이터를 계층적으로 나누어 모델을 생성한다. 또한, 재구성 단계에서는 실루엣 영상과 깊이 영상으로부터 계층적으로 나누어진 학습 데이터를 이용하여 3차원 인체 자세를 재구성한다. 학습 및 재구성의 마지막 단계에서는 실루엣 영상 대신 깊이 영상을 이용하여 3차원 인체 모델을 재구성한다. 한 장의 실루엣 영상을 이용하면 영상의 노이즈에 민감하기 때문에 재구성 단계의 상위 레벨에서는 실루엣 영상의 누적 영상을 이용한다. 실험 결과는 제안된 방법이 효율적으로 3차원 인체 자세를 재구성함을 보여준다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.12
/
pp.2693-2700
/
2009
This paper proposes an effective compression method to utilize the 3D integral image with large amount of data obtained by a lens array in various applications. The conventional compression methods for still images exhibit low performance in terms of coding efficiency and visual quality, since they cannot remove the correlation between elemental images. In the moving picture compression methods, 1D scanning techniques that produce a sequence of elemental images are not enough to remove the directional correlation between elemental images. The proposed method effectively sequences the elemental images from an integral image by the 2D referencing technique and compresses them using the multi-frame referencing of H.264/AVC. The proposed 2D referencing technique selects the optimal reference image according to vertical, horizontal, and diagonal correlation between elemental images. Experimental results show that compression with the sequence of elemental images presents better coding efficiency than that of still image compression. Moreover, the proposed 2D referencing technique is superior to the 1D scanning methods in terms of the objective performance and visual quality.
Park, Jong-Seung;Park, Hyeong-Seon;Im, In-Seong;Kim, Myeong-Ho
Journal of Scientific & Technological Knowledge Infrastructure
/
s.5
/
pp.31-40
/
2001
한국인의 인체 절단면 영상으로부터 인체의 3차원 데이터를 생성하였다. 다양한 종류의 3차원 렌더링 영상을 제작하고 이를 기반으로 하는 웹 기반정보시스템을 구축하였다. 인체 영상 정보시스템은 크게 렌더링에 필요한2차원 데이터를 생성하는 단계, 3차원 렌더링 데이터를 생성하는 단계, 영상을 데이터베이스화하고 이를 서비스하기 위한 시스템 구현 단계의 세 부분으로 나눌수 있다. 렌더링을 위한 2차원 영상처리는 절단면 영상의 분할과 정렬을 포함한다. 분할은 절단면 영상에 보여지는 인체의 부위를 구분하도록 하는 절차이고, 정렬은 왜곡된 영상 위치를 바로잡기 위한 절차이다. 3차원 렌더링은 절단면 영상들로부터 3차원 모델의 뷰를 생성하는 절차이다. 병렬처리를 통한 광선 추적 볼륨 렌더링 기법을 사용하여 잘라보기 및 돌려보기 렌더링 뷰를 생성한다. 각 절단면 영상 및 렌더링 영상은 인체영상 브라우저 및 검색기가 접근할 수 있도록 웹 시스템에 로드 하였다. 브라우저는 인체의 위치를 시각적으로 탐색 할 수 있도록 구현되었다. 각 단계별 기술적인 내용을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.