• Title/Summary/Keyword: 2차원 레이저 스캐너

Search Result 46, Processing Time 0.024 seconds

Assessment of over / under-break of tunnel utilizing BIM and 3D laser scanner (3차원 레이저 스캐너 및 BIM을 활용한 터널 과대.과소 굴착 평가)

  • Park, Jeong-Jun;Shin, Jae-Chou;Hwang, Ju-Hwan;Lee, Kang-Hyun;Seo, Hyung-Joon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.437-451
    • /
    • 2012
  • Application of 3D laser scanner to civil engineering is widely studied in various fields such as tunnel, bridge, calculation of earth volume, construction measurement, observation of rock joint, etc. Some studies on utilization of the 3D laser scanner for calculating the over-break and/or under-break of tunnels have also been carried out. However, in the previous research, the scanning data were usually compared with the 2D CAD blueprint results; although the shape of tunnel structure is relatively simple, for precise calculation of the over-break and/or under-break of tunnels, three-dimensional analysis based on BIM is needed. Therefore, in this paper, a new program that calculates the over-break and/or under-break of tunnels using the 3D laser scanner and the BIM is developed; moreover the effective and rapid process of data treatment is proposed. The accuracy of the developed program was verified by applying the new system to a real tunnels construction field.

Fast 3D mesh generation using projection for line laser-based 3D Scanners (라인 레이저 기반 3차원 스캐너에서 투영을 이용한 고속 3D 메쉬 생성)

  • Lee, Kyungme;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.513-518
    • /
    • 2016
  • This paper presents a fast 3D mesh generation method using projection for line laser-based 3D scanners. The well-known method for 3D mesh generation utilizes convex hulls for 4D vertices that is converted from the input 3D vertices. This 3D mesh generation for a large set of vertices requires a lot of time. To overcome this problem, the proposed method takes (${\theta}-y$) 2D depth map into account. The 2D depth map is a projection version of 3D data with a form of (${\theta}$, y, z) which are intermediately acquired by line laser-based 3D scanners. Thus, our 2D-based method is a very fast 3D mesh generation method. To evaluate our method, we conduct experiments with intermediate 3D vertex data from line-laser scanners. Experimental results show that the proposed method is superior to the existing method in terms of mesh generation speed.

3D Indoor Modeling Based on Terrestrial Laser Scanning (지상레이저스캐닝 기반 3차원 실내 모델링)

  • Hong, Seung Hwan;Cho, Hyoung Sig;Kim, Nam Hoon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.525-531
    • /
    • 2015
  • According to the increasing demand for 3D indoor spatial information, the utilization of a terrestrial laser scanner comes to the fore. However, the research for the comparison between a terrestrial laser scanning method and a traditional surveying method is insufficient. The paper evaluated the time-efficiency and the locational accuracy of an AMCW type and a direct TOF type of terrestrial laser scanning methods in comparison with the observation using a total station. As a result, an AMCW type showed higher time-efficiency than a direct TOF type and the RMSE between the two types of data was ${\pm}1mm$. Moreover, the terrestrial laser scanning method showed twice higher time-efficiency than the observation using a total station and the RMSE between the two data was ${\pm}3.4cm$. The results indicate that the terrestrial laser scanning method has better profitability and performance for 3D indoor modeling than the traditional survey using a total station. In the future, a terrestrial laser scanner can be efficiently utilized in the construction of 3D indoor spatial information.

Study of Servo Controller for Improving Position Accuracy of 3D Terrestrial Laser Scanner (지상용 3차원 레이저 스캐너의 측정 위치 정확도 향상을 위한 서보 제어기의 연구)

  • Yu, Jong-Wook;Jeong, Joong-Yeon;Kim, Tae-Hyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.187-194
    • /
    • 2009
  • This study is to improve position accuracy by selecting proper a servo motor and applying FOC(Field Oriented Control) on developing a 3D terrestrial laser scanner. A 3D terrestrial laser scanner under developing has range of scanning of azimuth 360$^\circ$and elevation 270$^\circ$. It is implemented by precise controlling of a azimuth motor and a elevation motor. In the consequence of study, we have known that position accuracy of the motor can be able to be improved with constant torque of the motor by using FOC(Field Oriented Control). The control technic of the motor is possible to apply a 3D terrestrial laser scanner as well as a robotic total station.

Analysis of Weld Characteristics for Aluminum 5XXX Series Laser Welding Using 3-Dimension Remote Scanner (3차원 원격 스캐너를 이용한 알루미늄 5000 계열의 레이저 용접에서 공정 변수에 따른 용접 특성 분석)

  • Kim, D.Y.;Park, Y.W.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • The latest trends of vehicle technology development are fuel efficiency improvement, body designs declining air resistance and lightweight of materials. Especially, as lightened weight of materials makes engine efficient so that vehicles keep the best performance, it is the best way to protect the environment and reduce fuel consumption. In this study, we conducted laser welding by using 3-dimension remote scanner that is 5J32 aluminium alloy. Furthermore, conduction experiment that was 3 times repeated for changing factors such as observing angle, laser power and welding speed. we observed exterior and cross section of weled part and tensile strength. When increasing laser power and decreasing laser speed, tensile strength increased. In order to evaluate factors that affect tensile strength qualitatively we conducted ANOVA. We assumed that the factors are observing angle, laser power and welding speed. Then we found that laser power and laser speed affect tensile strength. We conducted evaluation of weldability of aluminium alloy by above ways.

  • PDF

레이저스캐너를 활용한 철도건널목 안전성 향상 연구

  • Lee, Su-Hwan;Kim, Yu-Ho;Kim, Geon-Yeop;Baek, Jong-Hyeon
    • Information and Communications Magazine
    • /
    • v.32 no.12
    • /
    • pp.32-37
    • /
    • 2015
  • 본 글에서는 철도교통의 안전성 향상을 위해 철도건널목의 지장물을 검지하는 기술을 소개한다. 철도건널목에 자동차나 보행자 등 열차운행에 지장을 줄 수 있는 물체가 존재하는지 확인하기 위하여 현재 레이저빔 방식의 검지장치를 사용하고 있으나 기술적 한계와 문제점을 보이고 있다. 이를 극복하기 위해 2차원 레이저스캐너 센서를 적용하여 새로운 지장물 검지 시스템을 설계하였으며, 관심구간에 존재하는 물체의 크기와 방향을 검지하는 알고리즘을 탑재하여 효과적인 지장물 인식이 가능하도록 하였다. 제작한 시작품을 실제 운영노선에 설치하여 현장시험을 수행하였다. 본 글에서는 개발된 기술을 설명하고 현장시험 결과를 소개하고자 한다.

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

Optimization of Optics Design for 3D Laser Scanner (3차원 부품 레이저 용접용 스캐너 광학 최적설계)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.96-101
    • /
    • 2020
  • In this paper, we present the results of our research to perform 3D laser scanning functions by adding a focusing lens to a conventional 2D laser scanner. For the optical design, the ray-tracing technique was used along with a total of four lenses as the variable incident focusing lens, the collimating lens, and the F-Theta lens. As design variables, the curvature of the incident focusing lens (Lens #1) was assumed to be us, l mm and sumed mm, and the incident angles were set at 0cidenus, l. In addition, the distance between the focusing lens and the collimating lens was set to vary from 5 mm to 15 mm. When the incident focal length was varied from 5 mm to 15 mm, the exit focal length was calculated to vary from 67.5 mm to 56.8 mm for the lens with R = 100 mm and from 108.5 mm to 99.0 mm for the lens with R = 150 mm. When the incident angle was 0°, the focal aberration was only slightly observable at 10㎛ in both the x- and y-direction. At 7.5° was the focal aberration of approximately 20~50㎛ was measured at 20㎛. To investigate the chromatic aberration of the designed optical device, the distortion of the focus was observed when the 550 nm beam was simulated on lens designed for a 980 nm wavelength.

A Study on Assessment of Advance and Overbreak in Underground Excavation Utilizing 3D Scanner (3D 스캐너를 이용한 지하공동의 굴진장 및 여굴 평가 기초연구)

  • Noh, You-Song;Kim, Jung-Kyu;Ko, Young-Hun;Kim, Seong-Jun;Chung, So-Keul;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Abstract This study is to efficiently calculate and evaluate the elements of advance, overbreak and underbreak on the mine under the production using the 3D laser scanner. For this purpose, a 3D laser scanner was sued to acquire the point-cloud which records the space coordinates and modelling of the underground tunnel using the 3D modeling program. When each element was observed through the study result, the advance on the center cut was 2.6m in average while the total advance was 2.4m. If the drilling length of 3.8m is based, the advance rate was evaluated to be 67% in average in the center cut section with the total average of 64%. In addition, when the volume of overbreak was measured based on the design cross section, the average overbreak volume was found to be $4.5m^3$ on left wall, $4.5m^3$ on right wall, and $5m^3$ on roof with the total volume of $14m^3$. When the overbreak volume is measured based on the look-out cross section, it was $3m^3$ on roof with the total volume of $8.4m^3$. The rate of overbreak volume against the average excavation volume was 8% based on the design cross section and 5% based on the look-out cross section.