• Title/Summary/Keyword: 2진 로봇 머니퓰레이터

Search Result 3, Processing Time 0.014 seconds

An Inverse Kinematic Analysis of a Binary Robot Manipulator using Genetic Algorithms (유전 알고리즘을 이용한 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • 이인석;류길하
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.203-208
    • /
    • 2000
  • 2진 로봇 머니퓰레이터는 기하학적 형상이 가변트러스 구조로 되어 있으며 조인트의 구동원으로 사용되는 엑츄에이터는 2가지의 변위, 즉 최대 및 최소 변위만으로 동작한다. 따라서 작업영역은 연속적으로 주어지는 일반 로봇 머니퓰레이터와는 달리 유한 개의 위치 벡터의 집합 형태로 나타난다. 기존의 역기구학적 해석방법을 적용하기 어려운 2진 로봇 머니퓰레이터의 불연속적인 특성에 대해 새로운 작업영역과 역기구학 문제를 정의하였다. 유전 알고리즘을 사용하여 새로이 정의된 문제의 역기구학적 해석을 수행하였으며 유전 알고리즘이 2진 로봇 머니퓰레이터의 역기구학적 해석에 있어서 효과적이고 강건한 방법임을 보여주었다.

  • PDF

Inverse Kinematic Analysis of a Three Dimensional Binary Robot Manipulator (3차원 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Rhee, Ihn-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.205-212
    • /
    • 1999
  • A three dimensional binary parallel robot manipulator uses actuators which have only two stable states and its structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has some advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators it is very difficult to solve and inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem of three dimensional binary parallel robot manipulator using a backbone curve when the number of actuators are too much. We first derive the coordinate transformations associated with a three degree of freedom in-parallel actuated robot manipulator. The backbone curve is generated optimally by considering the maximum roll and pitch angles of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criterion.

  • PDF

Development of Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇 개발)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Oriental melon (Cucumis melo var. makuwa) should be cultivated on the soil and be harvested. It is difficult to find because it is covered with leaves, and furthermore, it is very hard to grip it due to its climbing stems. This study developed and tested oriental melon harvesting robots such as an end-effector, manipulator and identification device. The end effector is divided into a gripper for harvest and a cutter for stems. In addition, it was designed to control the gripping and cutting forces so that the gripper could move four fingers at the same time and the cutter could move back and forth. The manipulator was designed to realize a 4-axis manipulator structure to combine orthogonal coordinate-type and shuttle-type manipulators with L-R type model to rotate based on the central axis. With regard to the identification device, oriental melon was identified using the primary identification global view camera device and secondary identification local view camera device and selected in the prediction of the sugar content or maturity. As a result of the performance test using this device, the average harvest time was 18.2 sec/ea, average pick-up rate was 91.4%, average damage rate was 8.2% and average sorting rate was 72.6%.