세계적인 환경보호 추세에 발맞추어 단일 추진제 역시 강한 독성을 가지는 Hydrazine 대신 새로운 친환경 추진제를 찾으려는 노력이 계속되고 있다. 그 중 이온성 액체 추진제는 Hydrazine과 비교하여 낮은 독성, 높은 밀도, 그리고 높은 비추력을 가지고 있다. 이들 이온성 액체 추진제는 연소실 온도가 높아 감마 알루미나 등등의 촉매 지지체는 버틸 수가 없다. 따라서 고온에 안정적인 성능을 보이는 촉매가 필요하다. 바륨이 담지된 알루미나는 고온에서 Hexaaluminate로 변환될 수 있으며 그 열적 특성 또한 감마 알루미나보다 우수하다. 바륨이 담지된 알루미나에 백금을 올린 촉매의 특성을 알아보기 위해 $1300^{\circ}C$, $1400^{\circ}C$ 2시간 가열한 후 XRD, SEM, EDS, BET와 Drop test를 진행하였다.
The main purpose of this study is to provide the information of soot generation of toluene fuel droplet. To achieve this, this paper provides the experimental results on the different initial diameter of toluene droplet combustion characteristics conducted under equivalent ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) conditions. Visualization of single fuel droplet was performed with high resolution CCD camera and visualization system. At the same time, ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) were maintained by ambient condition control system. Soot volume fraction ($f_v$) was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The result of soot generation was almost the same regardless of initial droplet diameter since thermophoretic flux is not much changed under the same ambient conditions. Soot standoff ratio (SSR) of 2 mm diameter showed unstable variation characteristics due to the short available measuring time.
본 연구에서는 단일 포트 그레인 형상을 갖는 하이브리드 추진 시스템의 고체 연료 L/D 비 변화에 따른 연소 특성을 고찰하였다. 본 연구를 위해 그레인 포트 직경이 같은 경우와 그레인 길이가 같은 경우로 나누어 L/D 비 변화에 관한 실험을 수행하였다. 그레인 포트 직경이 같은 경우 L/D 비 변화에 따른 후퇴율은 큰 차이가 없었으며 L/D 비가 클수록 O/F 비는 낮았고 추력은 높았다. 그레인 길이가 같은 경우 L/D 비 변화에 따른 O/F 비와 추력은 큰 차이가 없었으며 L/D 비가 작을수록 후퇴율은 높았다.
본 연구에서는 단일 포트 연료 형상을 갖는 하이브리드 추진 시스템의 고체 연료의 L/D(길이/직경)비 변화에 따른 연소 특성을 고찰하였다. 본 연구를 위해 연료 포트 직경이 같은 경우와 연료 길이가 같은 경우로 나누어 L/D 비 변화에 관한 실험을 수행하였다 연료 포트 직경이 같은 경우 L/D 비 변화에 따른 후퇴율은 큰 차이가 없었으며 L/D 비가 클수록 O/F 비는 낮았고 추력과 특성속도는 높았다. 연료 길이가 같은 경우 L/D 비 변화에 따른 O/F 비와 추력, 특성속도는 큰 차이가 없었으며 L/D 비가 작을수록 후퇴율은 높았다. O/F 비의 변화가 없을 경우 $\dot{r}=a{G_0}^n$에서 지수 n은 0.5의 값을 갖는 것을 실험적으로 얻을 수 있었다. PE와 기체산소를 본 실험의 연료와 산화제로 사용하였다.
엔진소음을 소음특성에 따라 분류하면 공력소음(Aerodynamic Noise), 연소소음(Combustion Noise), 기계적인 소음(Mechanical Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise), 흡기계소음(Intake System Noise), 냉각계소음(Cooling System Noise), 엔진표면소음(Engine System Noise)등으로 분류할 수 있다. 이러한 여러소음중 엔진 내부의 유동에 의한 흡배기계통으로의 소음방출은 자동차 실 내외 소음의 중요한 문제로 대두되는데, 이를 줄이기 위해 그 동안 소음기 등의 서브시스템의 형태와 그 위치조정에 관한 연구가 수행되어 왔다. 그러나 이것이 비용 또는 성능에 영향을 미치므로 본질적인 소음원을 규명해 내는 것이 필요하게 되었다. 흡배기계의 소음은 엔진의 흡입, 배기행 정시 피스톤의 운동에 의해 팽창 및 압축파 형태의 압력파(pressure wave)로 발생하게 되고, 밸브근방에서는 유동의 박리(separation)에 의해 발생하게 된다. 소음기 등의 서브시스템에서도 유동의 박리에 의해 발생하게 되며 특히 배기행정시 발생하는 압력파는 비선형영역에 있게된다. 흡기소음은 배기에 비해 그 크기가 작아서 그동안 등한시 되어왔으나 이것이 소비자의 불평요인으로 작용하므로써 이에 대한 연구도 활발히 수행되어야 한다. Bender, Bramer[1]는 흡배기계 소음의 외부 방사에 관하여 전반적으로 기술하였고 Sierens등[2]은 흡기계에서 1차원 MOC(Method of Characteristics)방법으로 비정상 유동해석을 하고 실험결과와 비교하였다. J.S.Lamancusa 등[3]은 흡기 소음원을 실험을 통해 예측하였고, 흡기소음도 비선형 거동을 보인다고 밝혔다. Yositaka Nishio 등[4]은 새로운 흡기실험장치를 고안하여 공명기(resonator)의 위치 변화에 의한 저소음 흡기계를 설계 초기단계에서부터 적용하려 하였다. 일반적으로 흡배기계의 복잡한 형상 때문에 대부분 실험을 통해 문제를 해결하려 하였고, 수치해석은 피스톤의 운동을 배제한 단순화한 흡배기계의 정상상태 유동해석이 주를 이루어왔다. Taghaui and Dupont 등[5]은 KIVA코드를 사용하여 흡기포트와 연소실 그리고 밸브의 움직임을 동시에 고려한 수치해석을 도입하였다. 하지만 이들이 밸브의 운동을 고려하기 위해 사용한 이동격자는 격자점은 시간에 따라 변화하지만 그 격자의 수가 일정하게 유지되어 있어서 밸브의 완전개폐를 해석할 수가 없다. 강희정[6]은 단일 실린더와 단일 배기밸브를 갖는 문제로 단순화하여 피스톤과 밸브의 움직임을 고려하므로써 배기행정 후 소음이 어떻게 전파해 나가는가를 연구하였다. 본 연구에서도 최소밸브간격과 최대밸브간격 사이에서만 계산이 가능하나 흡기의 경우는 밸브가 닫힐 때 생기는 압력파가 중요하므로 실린더와 밸브사이에 벽면조건을 주어 밸브의 개폐를 모사하였다.
HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.
화력발전소의 연소가스에서 고순도의 $CO_2$를 분리, 회수하는 것을 목적으로, 에너지 비용이 적게 드는 것으로 알려진 PSA(Pressure Swing Adsorption)공정을 이용하였다. 흡착제로서 활성탄 및 제올라이트를 사용하여 연소가스에서 $CO_2$를 회수할 수 있는 장치를 제작하고 이를 조업하는 조건을 확립하고자 하였다. $CO_2$ 회수용으로 적합하지 않다고 알려져 있는 활성탄을 이용하여도 세정단계의 변형을 통한 새로운 사이클을 이용하여 고순도의 $CO_2$를 생성물로 얻을 수 있었다. 또한 활성탄과 제올라이트 각 흡착제의 흡착특성을 이용하여 이들 두 흡착제의 장점을 최대로 이용할 수 있도록 흡착탑의 일부만을 제올라이트 13X를 채워 조업하는 2단 적층 흡착탑을 이용하여 회수율의 향상을 얻을 수 있었다. 흡착탑의 도입부 쪽에 활성탄을, 배출부 쪽에 제올라이트를 채움으로써 최대의 효과를 얻을 수 있었는데, $CO_2$ 농도 13%, 유량 10 SLPM, 흡착압력 2.2기압에서 제올라이트를 부피비로 25%만 사용하여도 40%의 회수율 향상을 얻을 수 있었으며 50%를 이용한 경우에는 회수율이 67%까지 증가하였는데 이는 제올라이트만을 이용한 경우의 회수율과 비슷한 결과였다.
본 연구는 LNG를 연료로 사용하는 화력발전소 보일러에서 배출되는 1,000 $Nm^3/day$의 연소 배가스에 포함된 $8{\sim}10%$의 $CO_2$를 대상으로 순도 99%, 회수율 90%로 회수할 수 있는 실증규모의 다단계 막분리 공정에 관한 운전 결과이다. 이를 위해 본 연구팀에서는 가소화 안정성이 우수한 폴리이서설폰 중공사막을 개발하고 $CO_2/N_2$의 분리특성을 연구한바 있으며[1], 소형 모듈을 이용하여 압력 및 $CO_2$의 조성 변화에 따른 투과 특성을 실험과 향류 방식의 전산 모사를 통하여 확인하여 막분리에 의한 $CO_2$의 회수 가능성을 확인한 바 있다[2-4]. 이러한 선행 연구결과를 바탕으로 pilot 규모의 다단계 막분리 plant를 설계하여 제작, 설치, 운전하였으며 그 운전 결과를 다단계 공정의 수치 모사 결과와 비교하였다. 전체 공정은 크게 배출되는 배가스 내의 수분을 전단에서 제거하기 위한 제습 공정과 후단에 재순환이 가능한 4단계 막분리 공정으로 구성되어 있다. 4단 분리막 공정에서 배출되는 최종 $CO_2$의 농도는 운전 조건에 따라 $95{\sim}99%$의 $CO_2$가 $0.15{\sim}0.2$ ton/day의 회수율 $70{\sim}95%$회수규모로 얻어졌다. 얻어진 실험 결과는 수치 모사 결과와 비교하였을 때 매우 잘 일치 하는 것을 알 수 있었으며 운전 중 전체 공정은 안정적으로 작동하는 것을 확인할 수 있었다. 본 연구를 통해 다단계 막분리 공정을 통한 배가스에서 $CO_2$를 성공적으로 분리할 수 있었다.
20세기 전반 극초음속 공기흡입식 추진시스템에 대한 개념이 정립된 이래 항공우주기술선진국은 이러한 개념을 구현하기 위하여 꾸준히 연구를 진행하였으며 2004년 NASA의 X-43A Hyper-X가 마하 10의 극초 음속 공기흡입식 비행을 성공적으로 수행하였다. 현재 각 국에서는 이러한 극초음속 공기흡입식 추진시스템을 SSTO(Single Stage to Orbit) 또는 TSTO(Two Stage to Orbit) 개념의 재사용 위성 발사체 및 극초음속 미사일에 적용하기 위한 프로젝트가 본격적으로 진행되고 있다. 본 논문에는 미국, 유럽, 호주 아시아에서 개발하고 있는 극초음속 공기흡입식 추진시스템의 역사 및 현황과 이러한 추진시스템을 적용한 비행체, 미사일 개발 연구를 정리하였다.
다목적으로 활용할 수 있는 분리축방식의 터보축 엔진 개발을 위한 정상상태 해석 프로그램의 개발과 함께 동일한 형식의 가스터빈엔진 시험장치를 이용한 실험을 통해 프로그램의 해석결과와 비교, 그 타당성을 입증하였다. 실험에 이용된 시험장치는 1단 원심형 압축기, 인통형 연소기, 1단 원심형 압축기 터어빈 및 동력 터어빈으로 구성되어 있으며 출력은 3상 교류발전기를 통해 획득된다. 해석에 사용된 주요 구성품의 성능곡선은 시험장치 제작자로부터 획득된 자료를 이용하였으며, 경우에 따라 시험장치를 이용한 실험을 통하여 보정하였다. 시험장치를 이용한 실험결과를 프로그램 해석결과와 비교한 결과, 시험장치의 운용제한에 의해 실제 작동영역이 제한되기는 했으나, 압력비, 출력 등 주요 변수들에서 6% 미만의 오차를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.