• Title/Summary/Keyword: 2단식 경가스총

Search Result 6, Processing Time 0.02 seconds

Experimental Study on a Two-Stage Light-Gas Gun (2단 경가스총에 대한 실험적 연구)

  • Lee, Jung-Keun;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.10-15
    • /
    • 2010
  • Light gas guns have a large number of applications in various fields of engineering. A two-stage light-gas gun can produce an extremely high pressure in a very short interval of time. In general, the two-stage light-gas gun is made up of a high pressure tube, a compression tube and a launch tube, each stage being separated by diaphragms. This can be employed efficiently in the application of ultra-high pressure liquid jets. In the present study, experiments are carried out to investigate the projectile velocity and pressure behavior in the tubes according to the pressure changes at the frist diaphragm opening. In the present study result was found that the rupture pressure of the first diaphragm has a dominant influence on piston acceleration.

Numerical Simulation of Aerodynamic Characteristics of a Supersonic Projectile (초음속 발사체의 공력 특성에 관한 수치해석)

  • Lim Chae-Min;Lee Jeong-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.86-89
    • /
    • 2005
  • A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation system. The computed results reasonably capture the major flow characteristics which we generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

Atomization Effect of Supersonic Liquid Jet by a Nozzle L/d of Subscale High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 L/d에 따른 초음속 액체 제트의 미립화 특성)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.196-199
    • /
    • 2011
  • Subscale high-pressure injection system which use two-stage light gas gun composed with high-pressure tube, pump tube and launch tube can make supersonic liquid jet. The supersonic liquid jet enhances droplet atomization by shockwave in front of the jet. In this study, the experiments was executed to identify the atomization characteristics of the supersonic liquid jet using straight cone nozzle. SMD which presents the atomization characteristics was decreased from $151.2{\mu}m$ to $52.25{\mu}m$ by increasing of L/d.

  • PDF

Spray Characteristics of Supersonic Liquid Jet by a Nozzle Geometry of Miniature High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 형상에 따른 초음속 액체 제트 분무 특성에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.177-180
    • /
    • 2010
  • Two-stage light gas gun, sorted with Ballistic Range System, is used to research spray characteristics of supersonic liquid jets. When high pressure tube was pressurized to the 135 bar, diaphragm films which composed with OHP film are ruptured. Expansion gases accelerate a projectile approximately 250 m/s at the exit of pump tube. And accelerated projectile collides with liquid storage part and liquid jets were injected into supersonic conditions. Supersonic liquid jets show the multiple jets and generate shockwave at the forward region of jets. Supersonic liquid jets of speed and shockwave angle have different value at each case. Supersonic liquid jets with minimum velocities are injected with M=1.53 at the geometry condition of L/d=23.8.

  • PDF

A Numerical Simulation of Projectile Aerodynamics Using a Ballistic Range (Ballistic Range를 이용한 Projectile 공기역학의 수치모사)

  • Jung S. J.;Rajesh G.;Kim H. D.;Lee J. M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.386-393
    • /
    • 2005
  • The objective of the present study is to develop a new type of the Ballistic range, called 'two-stage light gas gun'. A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation systems. The computed results reasonably capture the major flow characteristics which are generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

Experimental Study on the Two-Stage Light-Gas Gun (2단 경가스총에 대한 실험적 연구)

  • Lee, Jung-Kuen;Lee, Jong-Sung;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.345-348
    • /
    • 2010
  • Light gas guns have a large number of applications in various fields of engineering. A two-stage light gas gun can develop an extremely high pressure in a very short interval of time. This can be employed efficiently in the application of ultra-high pressure liquid jets. In general, the two-stage light gas gun is made up of a high pressure tube, a compression tube and a launch tube, each stage being separated by diaphragms. The first diaphragm is installed downstream of the high pressure tube and the second, downstream of the compression tube. In the present study, experiments are carried out to investigate the projectile velocity and pressure behavior in the tubes according to the pressure changes at diaphragm opening. It is found that the rupture pressure of the first diaphragm has a dominant influence on projectile velocity. It is also observed that at pressures greater than 14 bar, the pressure in the launch tube exceeds that in the compression tube.

  • PDF