• Title/Summary/Keyword: 2,7-Dichlorofluorescin diacetate

Search Result 32, Processing Time 0.014 seconds

Protective Effects of Bifidobacterium bifidum Culture Supernatants and Intracellular Cell-Free Extracts on Human Dermal Fibroblasts against UV-B Irradiation (인간 진피섬유아세포에서 Bifidobacterium bifidum 배양액 및 추출액의 자외선B에 대한 보호 효능)

  • Gwon, Gi Yeong;Park, Gwi Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.801-808
    • /
    • 2017
  • The present study investigated the protective effects of Bifidobacterium bifidum culture supernatants (BbSC) and intracellular cell-free extracts (BbICFE) on human dermal fibroblasts (HDFs) against ultraviolet-B (UV-B) irradiation. HDFs were treated with UV-B, UV-B+BbCS, and UV-B+BbICFE. Treatment of UV-B-irradiated HDFs with BbCS and BbICFE significantly increased cell viability compared to UV-B-irradiated HDFs. BbCS treatment reduced senescence in HDFs by approximately 40.0%. Moreover, sub-G1 phase was significantly reduced in BbCS- and BbICFE-treated HDFs (3.3% and 4.5%, respectively). The effect of UV-B on oxidative damage of HDFs was measured by dichlorofluorescin diacetate. Fluorescence intensity significantly increased in UV-B-irradiated HDFs. Inhibition of cellular reactive oxygen species in HDFs treated with 0.01% BbCS was the highest at 34.1%. Levels of p21 and p53 protein expression induced by UV-B irradiation were reduced by treatment with BbCS and BbICFE (47.0% and 35.6%, respectively). These results show that BbCS and BbICFE reduce UV-B-induced cellular senescence and apoptosis in HDFs. Thus, BbCS and BbICFE can be used as potential agents for protection of UV-B-induced skin cell damage.

Ameliorating effect of the ethyl acetate fraction of Pteridium aquilinum on glucose-induced neuronal apoptosis (포도당으로 유도된 신경세포 손상에 대한 고사리 아세트산에틸 분획물의 개선 효과)

  • Park, Seon Kyeong;Guo, Tian Jiao;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Kwon, Bong Seok;Lee, Chang Jun;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.430-437
    • /
    • 2017
  • The protective effect of Pteridium aquilinum on high glucose-induced cytotoxicity was examined in vitro to investigate the relationship between diabetic condition and neuronal dysfunction. The ethyl acetate fraction of P. aquilinum (EFPA), with total phenolic content of 265.08 mg gallic acid equivalent/g, showed higher 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)/2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and lipid peroxidation inhibitory effect than any other fraction. In addition, EFPA showed a significant reduction in the inhibitory effect on ${\alpha}$-glucosidase activity ($IC_{50}$ value=$205.26{\mu}g/mL$) compared to the acarbose positive control. The anti-oxidative effect in PC12 cells, protective effects on high glucose-induced oxidative stress in neuronal cells, and neurotoxicity were measured using 2',7'-dichlorofluorescin diacetate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide, and lactate dehydrogenase assays, respectively. EFPA showed conspicuous inhibitory effect on cellular reactive oxygen species production and neuronal cell apoptosis. Finally, kaempferol-3-glucoside was identified as the main phenolic compound of EFPA using high performance liquid chromatography.