• Title/Summary/Keyword: 2,5-Furandicarboxylic acid

Search Result 4, Processing Time 0.018 seconds

Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in Raoultella ornithinolytica BF60 by Manipulation of the Key Genes in FDCA Biosynthesis Pathway

  • Yuan, Haibo;Liu, Yanfeng;Lv, Xueqin;Li, Jianghua;Du, Guocheng;Shi, Zhongping;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1999-2008
    • /
    • 2018
  • The compound 2,5-furandicarboxylic acid (FDCA), an important bio-based monomer for the production of various polymers, can be obtained from 5-hydroxymethylfurfural (HMF). However, efficient production of FDCA from HMF via biocatalysis has not been well studied. In this study, we report the identification of key genes that are involved in FDCA synthesis and then the engineering of Raoultella ornithinolytica BF60 for biocatalytic oxidation of HMF to FDCA using its resting cells. Specifically, previously unknown candidate genes, adhP3 and alkR, which were responsible for the reduction of HMF to the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol), were identified by transcriptomic analysis. Combinatorial deletion of these two genes resulted in 85.7% reduction in HMF alcohol formation and 23.7% improvement in FDCA production (242.0 mM). Subsequently, an aldehyde dehydrogenase, AldH, which was responsible for the oxidation of the intermediate 5-formyl-2-furoic acid (FFA) to FDCA, was identified and characterized. Finally, FDCA production was further improved by overexpressing AldH, resulting in a 96.2% yield of 264.7 mM FDCA. Importantly, the identification of these key genes not only contributes to our understanding of the FDCA synthesis pathway in R. ornithinolytica BF60 but also allows for improved FDCA production efficiency. Moreover, this work is likely to provide a valuable reference for producing other furanic chemicals.

Efficient Synthetic Routes of Biomass-derived Platform Chemicals (바이오매스 유래 플랫폼 케미컬들에 대한 효과적인 합성 방법들)

  • Irshad, Mobina;Lee, Seongwoo;Choi, Eunju;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.280-289
    • /
    • 2019
  • 5-hydroxymethylfurfural (HMF) and its derivatives, 2,5-furandicarboxylic acid (FDCA) or 2,5-diformylfuran (DFF), are regarded as the "sleeping giants" owing to their wide range of applications and a good alternative source for the production of significant chemicals in almost all kind of industries. This mini-review briefly covers the aspects related to the syntheses, transformation, and applications for the biomass-derived platform chemicals from past to most recent. Many scientific efforts have continuously been made to find out the environmental benign applicable ways in order to achieve the full advantage of these renewable materials because of not only to protect the globe but also shield the future of new generations. One of the best solutions could be the development and utilization of platform chemicals from the natural biomass.

Research Trend of Biomass-Derived Engineering Plastics (바이오매스 기반 엔지니어링 플라스틱 연구 동향)

  • Jeon, Hyeonyeol;Koo, Jun Mo;Park, Seul-A;Kim, Seon-Mi;Jegal, Jonggeon;Cha, Hyun Gil;Oh, Dongyeop X.;Hwang, Sung Yeon;Park, Jeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Sustainable plastics can be mainly categorized into (1) biodegradable plastics decomposed into water and carbon dioxide after use, and (2) biomass-derived plastics possessing the carbon neutrality by utilizing raw materials converted from atmospheric carbon dioxide to biomass. Recently, biomass-derived engineering plastics (EP) and natural nanofiber-reinforced nanocomposites are emerging as a new direction of the industry. In addition to the eco-friendliness of natural resources, these materials are competitive over petroleum-based plastics in the high value-added plastics market. Polyesters and polycarbonates synthesized from isosorbide and 2,5-furandicarboxylic acid, which are representative biomass-derived monomers, are at the forefront of industrialization due to their higher transparency, mechanical properties, thermal stability, and gas barrier properties. Moreover, isosorbide has potential to be applied to super EP material with continuous service temperature over 150 ℃. In situ polymerization utilizing surface hydrophilicity and multi-functionality of natural nanofibers such as nanocellulose and nanochitin achieves remarkable improvements of mechanical properties with the minimal dose of nanofillers. Biomass-derived tough-plastics covered in this review are expected to replace petroleum-based plastics by satisfying the carbon neutrality required by the environment, the high functionality by the consumer, and the accessibility by the industry.

Potent Anticarcinogenic Action of Moutan radix for Mouse Ascites Cancer Induced by Mouse Sarcoma 180 Cells (Moutan radix의 mouse sarcoma 180 cell로 유발한 mouse ascites cancer에 대한 항암효과)

  • Bahn, Kyeong-N.;Lee, Eun-J.;Yang, Min-S.;Kim, Jeong-O.;Ha, Yeong-L.
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.364-369
    • /
    • 1995
  • Anticarcinogenic activity of Moutan radix for mouse ascites cancer induced by mouse Sarcoma 180 (S-180) cells was investigated. Methanol extract of Moutan radix including other folk medicinal plants (Taxus cuspidata, Curcuma longa, Artemisia capillaris, Ligrstri fructus, and Liriope platyphylla) used to remedy or cure many chronic human diseases like cancer was fractionated into hexane, chloroform ($CHCl_3$), ethylacetate (EtOAc), and butanol (BuOH) fractions. Anticarcinogenic activity of the fractions, exhibited a strong cytotoxicity for L1210 and S-180 cells, was examined for mouse ascites cancer induced by S-180 cells. Male ICR mice (7 mice/treatment, $5{\sim}6$ weeks of age, $23{\pm}1\;g$ were injected i.p. with S-180 cells ($1{\times}10^{7}\;cell/1\;ml$ PBS). One day later, each mouse was given 0.1 ml of 10% DMSO containing sample ($30\;{\mu}g/g$ body weight) every day for 10 consecutive days. Control mice were only given 0.1ml S-180 cells and 0.1 ml 10% DMSO. Mice treated with EtOAc fraction of Moutan radix showed 28.7 days of life, which is 167% of control mice's life. Based on the dose-dependant experiment mice treated with $30\;{\mu}g$ showed longer life relative to mice treated with ootherr doses (5, 15, $60\;{\mu}g$), and mice treated with $60\;{\mu}g$ exhibited toxic symptoms. Body weight of mice treated with Moutan radix was significantly reduced relative to that of control mice (p<0.05). GC-MS analysis in conjunction with silica-gel column chromatography revealed that the EtOAc fraction contained 2-methoxylphenol, benzoic acid, 1-(4-hydroxy-3-methoxyphenyl)ethanone, 8-methyl-2,4(1H,3H)pteridinedione and 2,5-furan-dicarboxylic dimethyl ester as regards to the anticarcinogenic property of the EtOAc fraction. These results suggest that Moutan radix might be included as an anticarcinogenic medicinal plant for treatment of ascites cancer.

  • PDF