• Title/Summary/Keyword: 2,4-DNPH

Search Result 40, Processing Time 0.027 seconds

Analysis and risk assessment of formaldehyde in water from water purification plant in korea (국내 정수장 먹는 물 중 폼알데히드 함유실태 조사 및 위해성 평가 연구)

  • Chae, Hyojin;Kim, Hyun Ku;Kim, Seungki;Pyo, Heesoo;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.386-394
    • /
    • 2009
  • Formaldehyde is used in lether manufacture, a dry plate and an explosive. It is by-product of ozonizing process in filtration plant. The effects of exposure are eye pruritus, tickle, runing nose, blocking nasal passages and headache. It also makes a dried throat and causes inflammation. It is classified as B1 group for inhalation by US. EPA, which can cause cancer in human. For analysis of formaldehyde, formaldehydes-DNPH derivative was extracted with solid cartridge and was analyzed by High Performance Liquid Chromatography/Diode Array Detector (HPLC/DAD). The detection limit was $3{\mu}g/L$ and the recoveries were 72.3~109.1% (RSD 2.9~11.5%). Water samples were collected in four Korean rivers, four times per year seasonally for 10 years from 1998 to 2007. The monitoring results were 48.8% (630/1291), $5.15{\sim}101.9{\mu}g/L$ in purified water. Because of non-carcinogen in drinking water, hazard index is calculated with RfD. Results of excess cnacer risk was below 1 and was considered as safe value.

Characteristics of Formaldehyde Concentrations in the Underground Spaces in Gyungnam Province (경남지역 지하생활공간 중 미량 유해물질인 포름알데히드의 농도 분포 특성)

  • Ha Kwon Chul
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.353-357
    • /
    • 2004
  • The purpose of this research is to characterize formaldehyde as trace toxic air pollutant in the underground spaces in Gyungnam province. Air samples of formaldehyde were taken in the three underground spaces for ten months from April 2003 to January 2004. The IAQ(Indoor Air Quality) of underground spaces were controled using central ventilation(supply/exhaust) system. The levels of GM of airborne formaldehyde concentrations in three sampling spaces were well below applicable standards, Korean Ministry of Environment, 0.1 ppm. However, some sample of airborne formaldehyde concentrations in underground spaces 'B' and 'C' were in excess of standard, due to the commercial products in shop, structural material, and the climate having high humidity and temperature. There are statistical differences in levels of formaldehyde by sampling spaces (p=0.086).

A Study on the Peak Separation of Acetone and Acrolein Based on High-Performance Liquid Chromatography (HPLC) Method

  • Kim, Shin-Do;Kim, Chang-Hwan;Park, Jin-Su;Lee, Jeong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2011-2016
    • /
    • 2009
  • To resolve the differentiation problem of acetone and acrolein in the analysis of carbonyls by high-performance liquid chromatography (HPLC), we investigated the optimum analytical conditions for their separation. Carbonyl compounds were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated cartridges. We examined the influence of three experimental variables: temperature (25, 30, 40, 50 and 60 ${^{\circ}C}$), flow rate (1.0 and 1.2 mL/min), and relative mobile phase composition (among acetonitrile, water and tetrahydrofuran). The experimental results revealed the optimum analytical condition of a flow rate of 1.2 mL/min, temperature of 32 ${^{\circ}C}$ and mobile phase composition of acetonitrile: water: tetrahydrofuran = 34 : 52.8 : 13.2. The analysis of indoor air composition indicated that acrolein and acetone comprised 11% and 42% of all aldehydes, respectively.

Measurement of Formaldehyde in the Atmosphere using a Dual-channel Glass Coil Sampler (이중 채널 유리코일 샘플러를 이용한 대기 중 포름알데하이드 측정)

  • Park Seung-Shik;Hong Sang-Bum;Lee Jai-Hoon;Cho Sung-Yong;Kim Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.259-266
    • /
    • 2006
  • A dual-channel glass coil sampling technique was used to measure hourly formaldehyde concentration in the ambient air. The dual-channel coil sampling assembly consists of three parts; an all-pyrex 28-turn coil made of 0.2-cm internal diameter glass tubing for gas-liquid contact and scrubbing of soluble gases, an inlet section upstream of the coil for introducing sample air and scrubbing solution, and a widened glass section downstream of the coil for gas-liquid separation. The scrubbing solution used was a dilute aqueous DNPH (dinitrophenylhydrazine) solution. Hourly concentration of formaldehyde was determined at a Gwangju semi-urban site during two intensive studies between September and October using the dual channel glass-coil/DNPH sampling technique and HPLC (High Performance Liquid Chromatography) analysis. The mean concentration was 1.7($0.4{\sim}4.7$) and 3.0($0.5{\sim}19.1$) ppbv for the September and October intensives, respectively, which are considerably low, compared to those measured in polluted urban areas around the world including several urban areas of Korea. The diurnal variation showed significant increase of formaldehyde in the daytime suggesting the dominance of formation of formaldehyde due to photochemical oxidation of methane and other hydrocarbons. An increase in the formaldehyde sometimes in the night might be due to an increase in primary source, i.e. traffic emissions. It was also found that rapid increase in formaldehyde levels from 3.0 to 19.1 ppbv in the afternoon on October 20 was due to plumes from burning of agricultural wastes such as rice straw and stubble. It is expected from the measurement data that the constructed dual-channel glass coil sampling system can be utilized for measuring atmospheric concentration of the formaldehyde with high time resolution.

Adsorption of Formaldehyde by Wood Charcoal-Based Building Materials (목탄계 건축자재에 의한 포름알데히드 흡착)

  • Lee, Oh-Kyu;Choi, Joon-Weon;Jo, Tae-Su;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • The building materials used for improving indoor air quality, the wood charcoal mixed with cement mortar or natural water paint were examined for their potential removing ability of formaldehyde. After the reaction of samples with formaldehyde in the glass flasks designed in our lab, the remaining formaldehyde was collected using DNPH (2,4-dinitrophenyl hydrazine) cartridges, and their concentration was determined using HPLC. From the results, it was found that the removing amount of formaldehyde per one gram sample containing 5, 10, or 15% of wood charcoal was more than three times compared to that of control (100% cement mortar or water paint). Their elimination percentages from the initial formaldehyde was about 80~90%. The experimental results for wood charcoal-water paint showed a similar trend with those of wood charcoal-cement mortar samples. Their elimination percentages from the initial formaldehyde was about 90%. It is proposed that formaldehyde is adsorbed on the adsorbed 'O' or 'OH' groups in the graphene layers formed through the re-arrangement of lignocellulose in the wood during the carbonization procedure.

A Study on the Variation of Vitamin C Content in Cooked Spinach by the Cookery Method. (시금치나물의 조리방법에 따른 Vitamin C 함량변화에 관한 연구)

  • 김양희
    • Journal of the Korean Home Economics Association
    • /
    • v.11 no.1
    • /
    • pp.44-56
    • /
    • 1973
  • The effect of the temperature and the time of scalding, and the addition of various seasoning on the remaining % of total Vitamin C contained in Spinach (Spinacia oleracea) was studied and discussed by means of chemical kinetics. The quantitative measurements of total Vitamin C were made by 2,4-dinitrophenyl hydrazine (DNPH) method with Clinical Electrophotometer (Fisher). The sample spinach contains 39.88mg. % of total vitamin C on the average, and the ratio of oxidized and reduced forms of Vitamin C is 1 : 4.7. When the sample spinach was scalded, the kinetics of the decrease of the remaining total vitamin C. % was observed to follow the first order reactions regardless of the temperatures applied (i,e. 70$^{o}$ , 80$^{o}$ , 90$^{o}$ and 100$^{o}$ ) with half-life range of 2.10 - 1.47 minutes. In the case of the addition of various seasonings, the addition of various seasonings, the kinetics remaining Vitamin C % showed to be the zero order reactions regardless of the kinds of seasonings and storage temperatures. With the addition of seasonings, the stability of Vitamin C was found to be increased in the order table salt+sesame oil+vinegar+soybean sauce, without seasoning, table salt+sesame oil, table salt+sesame oil+soybean sauce.

  • PDF

A Study for the Indoor Air Concentration of VOCs and HCHO in Newly Built and Remodeled Classrooms (신개축 교사내 실내공기중 휘발성유기화합물과 폼알데히드의 농도 특성)

  • Park, Jeong Ho;Yang, Su Myoung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.222-228
    • /
    • 2013
  • Objectives: The indoor air quality of newly-built (NC) and remodeled (RC) school classrooms was assessed. The primary aim was to show correlations between volatile organic compounds (VOCs) and formaldehyde (HCHO) pollutant levels. Methods: This study investigated the indoor air concentrations of VOCs and HCHO at 26 sites of newly built and 68 sites of remodeled classrooms located in South Gyeongsang Province between 2010 and 2012. VOCs in the indoor air were determined by adsorbent tube (Tenax TA) and automatic thermal desorption coupled with GC-MS analysis. Target analytes were five VOCs: benzene, toluene, ethylbenzene, xylene, and styrene. HCHO was collected with a 2,4-DNPH cartridge and analyzed by HPLC. Conclusions: This study estimated that indoor VOCs and HCHO concentrations in the classrooms were mainly affected by interior building materials and classroom equipment. For proper indoor air quality in schools, classroom air should be improved through reduction of hazardous materials by adequate ventilation, selecting environmental friendly materials, etc.

A Study on Emission Characteristics of Carbonyl Compounds for Indoor Air in New Apartment (신축공동주택의 실내공기 중 카보닐화합물의 방출특성에 관한 연구)

  • Ryu, Jung-Min;Cho, Tae-Jin;Jang, Seong-Ki;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.807-818
    • /
    • 2010
  • The study is about variations in Carbonyl compounds concentration within apartment buildings according to pre-residence and residence. We consecutively investigated indoor air pollutants in 120 households in 6 cities at pre-residence and residence. Carbonyl compounds were collected using the 2,4-DNPH cartridge and were analyzed using HPLC. The carbonyls concentration of indoor air in the new apartments before occupation measured formadlehyde($76.0\;{\mu}g/m^3$), acetone($85.9\;{\mu}g/m^3$), acetaldehyde($13.8\;{\mu}g/m^3$). The carbonyls concentration of indoor air in the new apartments after occupation measured formadlehyde($233.1\;{\mu}g/m^3$), acetone($128.9\;{\mu}g/m^3$), acetaldehyde($29.8\;{\mu}g/m^3$), respectively. As a result, the mean concentration of carbonyl compounds within the pre-occupancy stage was lower than those of residence.

Trapping of Methylglyoxal by Sieboldin from Malus baccata L. and Identification of Sieboldin-Methylglyoxal Adducts Forms

  • Kim, Ji Hoon;Zhang, Kaixuan;Lee, Juhee;Gao, En Mei;Lee, Yun Jung;Son, Rak Ho;Syed, Ahmed Shah;Kim, Chul Young
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.245-250
    • /
    • 2021
  • The methylglyoxal (MGO) trapping constituents from Malus baccata L. were investigated using incubation of MGO and crude extract under physiological conditions followed by HPLC analysis. The peak areas of MGO trapping compounds decreased, and their chemical structures were identified by HPLC-ESI/MS. Sieboldin was identified as a major active molecule representing MGO-trapping activity of the crude extract. After reaction of sieboldin and MGO, remaining MGO was calculated by microplate assay method using imine (Schiff base) formation of 2,4-dinitrophenylhydrazine (DNPH) and aldehyde group. After 4 h incubation, sieboldin trapped over 43.8% MGO at a concentration of 0.33 mM and showed MGO scavenging activity with an RC50 value of 0.88 mM for the incubation of 30 min under physiological conditions. It was also confirmed that sieboldin inhibited the production of advanced glycation end products (AGE) produced by bovine serum albumins (BSA)/MGO. Additionally, MGO trapping mechanism of sieboldin was more specifically identified by 1H-, 13C-, 2D NMR and, confirm to be attached to the position of C-3' (or 5').

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.