• Title/Summary/Keyword: 2, 6-dimethyl pyrazine

Search Result 22, Processing Time 0.032 seconds

Effect of mugwort extract on the quality and the changes of chemical compositions of the Chung-kookjang prepared with frozen soybean (청국장제조시 대두원료의 동결과 쑥추출물의 첨가가 품질 및 이화학적 성분변화에 미치는 영향)

  • Choi, Byoung-Dal;Lee, Si-Kyung;Yun, Sei-Eok;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.41 no.7
    • /
    • pp.510-515
    • /
    • 1998
  • Effect of freezing of soybean and addition of mugwort on the flavor development and the changes of chemical compositions in Chungkookjang was investigated. The changes in the amount of amino-type N, the activities of ${\alpha}-amylase$ and protease, and the content of volatile compounds were determined during aging of Chungkookjang. During ripening, a little higher protease activity was detected in Chungkookjang made of frozen soybean than in that made of non-frozen soybean. However, the profile of ${\alpha}-amylase$ activity of Chungkookjang made of frozen soybean was very similar to that of Chungkookjang made of non-frozen soybean. The amount of amino-type N increased gradually with the ripening period and decreased after 21 days of ripening. The amount of amino-type N was slightly higher in Chungkookjang made of frozen soybean than in that made of non-frozen soybean. Addition of mugwort had little effect on the enzyme activities and the amino-type N content. The mugwort added in Chungkookjang reduced the production of cis-3-hexenol which is responsible for the unpleasant odor, and freezing of soybean enhanced the production of 2, 6-dimethyl pyrazine which is contribute to the taste. According to sensory evaluation, flavor was the highest after the 14 days of ripening and addition of mugwort increased significantly the flavor in both Chungkookjang prepared with frozen soybean and Chungkookjang with non-frozen soybean. However, the effect of freezing of soybean on the flavor was not significant.

  • PDF

The Pyrolytic Behaviors of Tobacco Constituents and Additives by Double-Shot Pyrolyzer (열분해 조건에 의한 담배 성분과 첨가제의 열분해 특성)

  • Lee Jae Gon;Jang Hee Jin;Kwag Jae Jin;Lee Dong Wook;Lee Chang Gook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.2 s.52
    • /
    • pp.141-151
    • /
    • 2004
  • This study was conducted to evaluate the characterization of the pyrolysis products of tobacco constituents such as cellulose, lignin and tobacco additives. The pyrolysis condition was designed to simulate the pyrolysis/distillation zone$(200\~600^{\circ}C)$ and combustion zone$(700\~950^{\circ}C)$of burning com in the smoking cigarette. The pyrolysis products were determined by GC/MS after pyrolysis using Double-Shot pyrolyzer. In the case of cellulose and lignin, the number of pyrolysis product in the condition that simulate the pyrolysis/distillation zone was much more than the combustion zone simulating one. The major products of cellulose were levoglucosan, furfural, and 1, 6-anhydro-$\beta$-D-glucofuranose and that of lignin were phenol, 2-methoxy phenol, and 1, 2-dimethoxy benzene. In the case of tobacco additives such as 2, 6-dimethyl pyrazine, maltol, and piperonal, the pyrolysis products of these additives were evaporated from the pyrolyszer at least $96\%$ intactly. These results indicate that tobacco constituents such as cellulose and lignin were thermally degraded at the pyrolysis/distillation zone and thoroughly broke down at the combustion zone, but tobacco additives were intactly evaporated from burning com of smoking cigarette.

Aroma Characterization of Roasted Bulgogi Reaction Flavor Manufactured by a High-temperature Reaction Apparatus (고온반응기로 제조한 구운 불고기 반응향의 향미특성)

  • Seo, Won-Ho;Kim, Young-Kwon;Jang, Seong-Ho;Baek, Hyung Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.176-183
    • /
    • 2015
  • To characterize the aroma properties of roasted bulgogi reaction flavor obtained by using a high-temperature reaction apparatus, the volatile flavor and aroma-active compounds were analyzed using simultaneous steam distillation and solvent extraction (SDE)-gas chromatography-mass spectrometry-olfactometry (GC-MS-O). One hundred five volatile compounds were detected in roasted bulgogi reaction flavor using GC-MS. Out of these compounds, furfural was the most abundant volatile compound, followed in order of abundance by 5-methyl furfural, phenylacetaldehyde, and nonanal. Of the volatile compounds identified in roasted bulgogi reaction flavor, 33 aroma-active compounds were detected using GC-O. 2,3-Butanedione and furfural were the most intense aroma-active compounds detected. Other relatively intense odorants included hexanal, octanal, nonanal, undecanal, phenylacetaldehyde, 5-methyl furfural, 2,6-dimethyl pyrazine, and dimethyl trisulfide. These were important aroma-active compounds that contributed to the aroma of roasted bulgogi reaction flavor because of their potency and aroma properties. The concentrations of the aroma-active compounds increased as the reaction temperature increased, whereas those of the sulfide compounds decreased.

Taste Compounds of Small Black Bean Chungkugjang Added with Kiwi and Radish (키위와 무를 첨가한 소립 검정콩 청국장의 정미성분)

  • Shon, Mi-Yae;Kwon, Sun-Hwa;Seo, Kwon-Il;Park, Seok-Kyu;Park, Jeong-Ro
    • Journal of Life Science
    • /
    • v.11 no.6
    • /
    • pp.517-522
    • /
    • 2001
  • To Confirm the repression of off-odor and improvement of food quality in small black bean chungkugjang (SBC), some taste compounds of SBC added with kiwi and radish homogenate and fermented fro 3 days at 42$^{\circ}C$ were investigated. Contents of free amino acids in SBC were lower than that of soybean chungkugjang (SC) and were increased by adding kiwi and radish homogenate to black bean, indicating that two materials were effective to the enzymatic digestibility of soy protein. Of organic acids, citric acid was the most abundant, followed by acetic acid and lactic acid. Fatty acid composition was high in the order of linoleic acid (50.82~54.51%), oleic acid (17.76%~22.10%) and plamitic acid(12.13~13.79%). There were no significant difference in compositions of organic acids and fatty acids of chungkugjang. Major volatile compounds of SBC were indole , 2-5-dimethyl pyrazine and trimethyl pyrazine. Contents of alkyl pyrazines that contribute the characteristic aroma and flavor of SBC added and fermented with kiwi and radish homogenate were 3 times lower than those of SC. Uracil and UMP were major nucleic acie-drlated compounds in all four chungkugjangs. Contents of the other nucleic acid-related compounds were a similar trend in all chungkugjangs.

  • PDF

Volatile Flavor Components of Wild Chopi (Zanthoxylum piperitum De Candolle) Leaf (야생 초피(Zanthoxylum piperitum De Candolle)잎의 향기성분)

  • 박준희;차원섭;오상룡;조영제;이원영
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.5
    • /
    • pp.483-489
    • /
    • 2000
  • Wild Chopi leaves were harvested near Chounghwa Mt. Sangju city in Kyungpook province. Chopi leaves were dried naturally and crushed with and without blanching. From mechanical analysis(GC). fifty five peaks were identified as volatile materials in no blanching leaf. Among the fifty five peaks, twenty three peaks were identified as hydrocarbones(dodecane, sabinene, myrcene etc.), ten peaks as alcohols (isobutylalcohol. cis-pentenol, 1-pentenol, 1-penten-3-ol etc.), seven peaks as aldehydes (3-methylbua-tanal, hexanal, 2,6-dimethyl hept-5-al etc.), four peaks as ketones(3-hydroxy-2-butanone, 2-nonanone, 2-undecanone, 2-tridecanone) and six peaks as esters ( cis-3-hexenyl acetate, linalyl acetate. citronellyl acetate, nervy acetate etc.). Other peaks were founded as 3-cyano-2,5-dimethylpyrazine, dimethyl sulfide, chloroform, 1,8 cineole. Thirty five peaks were identified as volatile materials in blanching leaf. Twenty peaks were identified as hydrocarbones(1,1-oxybis-ethane, $\alpha$-pinene, camphene. myrcene, $\beta$-phellan-drene, $\beta$-caryophyllene etc.), as alcohol(L-linalool, (-)-isopulgerol, $\alpha$-terpineol. citronellol etc.), as aldehydes(nonanal, citronellal), as ketones(2-undecanone, 2-tridecanone etc.) and as esteres(citronellyl acetate. cis-3-hexenyl acetate, neryl acetate etc.). Other peaks were found as 3-cyano-2,5-dimethyl-pyrazine. The amount of volatile materials such as $\alpha$-pinene, myrcene, $\beta$-phellanderene, L-linalool, citronellal, citronellyl acetate, $\beta$-caryophyllene were detected abundantly among the volatile materials.

  • PDF

Elution Profiles of Volatile Compounds and Free Amino Acids during Alcohol Soaking of Garlic(Allum sativum L.) (마늘의 alcohol 침지 중 휘발성 향기성분과 침출유리아미노산 함량)

  • Lee, Young-Guen
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.286-292
    • /
    • 2007
  • Free amino acids and volatile compounds of fresh garlic and its liqueur were investigated to search elution profile of those components as basic data for development of garlic liqueur. The garlic was soaked in 20% alcohol solution and then sampled every week for 5 weeks. The major free amino acids were L-aspartic acid, L-glutamic acid, L-arginine, L-alanine, L-proline, L-asparagine and L-serine. Neutral amino acids such as L-threonine, L-proline, L-valine and L-leucine, and aromatic amino acids such as tyrosine and phenylalanine were eluted over 80% of those content in fresh garlic after 3 weeks of soaking, but acidic, basic and sulfur containing amino acids were below 80% even after 5 weeks. Sulfide compounds such as diallyl trisulfide, diallyl disulfide, methyl allyl disulfide, 2-vinyl-4H-1,3-dithi in, 3-vinyl-3,4-dihydro-1,2-dithiin, 3,5-diethyl-1,24-trithiolane, isobutyl isothiocyanate and diallyl sulfide were identified as major volatile compounds of fresh garlic by using GC/MS. Among volatile compounds of fresh garlic, allyl alcohol, diallyl disulfide, 3,5-diethyl-1,2,4-trithiolane, diallyl trisulfide and 3,4-dimethoxy furan were eluted to liqueur, but those compounds except 3,5-diethyl-1,2,4-trithiolane were lowered in liqueur during soaking. Furfural, 5-methylfurfural, 5-hydroxymethylfurfural, dimethyl pyrazine, furfuryl alcohol, 3-hydroxy-2-bytanone and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyr-an-4-one were generated newly and their content increased in liqueur during soaking.

Volatile Flavor Compounds in Commercial Black Garlic Extracts (시판 흑마늘추출액의 휘발성 향기성분)

  • Jeon, Seon-Young;Baek, Jeong-Hwa;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.116-122
    • /
    • 2012
  • Volatile flavor compounds derived from four black garlic extracts purchased in a local market were analyzed for the purpose of quality assessment. A total of 68 compounds was detected in samples using solid phase microextraction (SPME)/GC/MSD, and they were mainly sulfur-containing compounds, including three unknown compounds (21), aldehydes (10), furans (7), alcohols (6), aromatic compounds (7), ketones (4), acids (4), nitrogen-containing compounds (3), esters (2), and miscellaneous compounds (4). 2,6-Dimethyl-4-heptanone having a fruity-sweet odor was the most abundant in all of the samples. Six sulfur-containing compounds including allyl sulfide, 4-methyl-1,2,4-thiazole, 1,3,5-trithiane, unknown I (RI 1564), unknown II (RI 1565), and unknown III (RI 1613) were detected in all of the samples and appeared to contribute to the garlic-like odor. Particularly, three aldehydes (3-methylbutanal, benzaldehyde, phenylacetaldehyde), four furans (furfural, 2-acetylfuran, 5-methyl-2-furfural, furfural alcohol), and others (2,6-dimethylpyrazine, acetic acid) formed through a Maillard reaction during garlic aging were detected in all of the samples, and they contributed to the characteristic burnt, sweet, and sour flavors of black garlic extracts.

Volatile Components in the Soy Sauce Manufactured by Bacillus Species and Fused Yeast

  • Kim, Haeng-Ja;Lee, Eun-Ju;Shin, Ok-Sun;Ji, Won-Dae;Choi, Myeong-Rak;Kim, Jong-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.194-201
    • /
    • 1996
  • To develop a method appropriate for mass production in a factory, we manufactured soy sauce with Bacillus species SSA3-2M1 and fused ST723-F31 at $30^{\circ}C$ with aeration of 1/3 vvm for 40 days. The flavor components extracted from the manufactured soy sauce were fractionated to neutral, acidic, basic and phenolic fraction and identified by GC-mass. Among the 60 kinds of identified flavor components, 16 and 23 components were detected in traditional Korean soy sauce and soybean paste, respectively. There were three peak regions that smelled like soy sauce with the GC sniffing test of flavor components and 2, 6-dimethyl pyrazine, benzaldehyde, 2-methoxy phenol, phenol and benzeneethanol which were identified as character impact compounds of traditional Korean soy sauce and soybean paste were identified in the region that smelled like soy sauce. It is therefore considered possible to achieve mass production of soy sauce with standard quality by Bacillus species SSA3-2M1 and fused ST723-F31 in the factory.

  • PDF

Quality Characteristic of Hwangki(Astragalus membranaceus) Chungkukjang during Fermentation (황기청국장의 발효 중 품질특성)

  • Choi, Hye-Sun;Joo, Seon-Jong;Yoon, Hyang-Sik;Kim, Ki-Sik;Song, In-Gyu;Min, Kyeong-Beom
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.356-363
    • /
    • 2007
  • This study investigated the effects of a Hwangki (Astragalus membranaceus) extract on the quality of Chungkukjang fermented by Bacillus subtilis KCCM 12148, at 30, 40, and $50^{\circ}C$, for 4 days. Changes in moisture contents, protein levels, pH values, ammonia-type nitrogen levels, color, angiotensin-converting-enzyme (ACE) inhibition rates, and fibrinolytic activities, were all determined. For both control and test, the moisture contents decreased gradually with time and the protein levels increased slightly. The pH values fell at the beginning of fermentation and then rose. The content of ammonia-type nitrogen was higher in Hwangki with Chungkukjang than in control, until 24 hr after fermentation commenced. After that time, the content of ammonia-type nitrogen control was higher in the control than in the Hwangki with Chungkukjang sample. Color features, such as lightness, redness, and yellowness, all decreased during fermentation, in both control and test. The highest ACE inhibition rates during fermentation at $40^{\circ}C$ were 90.9% in the control (48 hr after fermentation commenced) and 95.3% in Hwangki with Chungkukjang(24 hr). Fibrinolytic activities of Chungkukjang and Hwangki Chungkukjang were 100.7 and 74.4% respectively. The content of 2,6-dimethyl pyrazine in the control was higher than that in Hwangki with Chungkukjang. Sensory evaluationtests showed that the addition of Hwangki significantly improved the overall palatability of Chungkukjang.

Studies on the Volatile Flavor Compounds of Sesame Oils with Roasting Temperature (볶음온도에 따른 참기름의 휘발성향기성분 변화)

  • Kim, Hyeon-Wee;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.238-245
    • /
    • 2000
  • This study was investigated to compare the changes of flavors in sesame oil with roasting temperature $(110^{\circ}C{\sim}230^{\circ}C)$. In the results of analyzing the volatile flavor compounds of sesame oil with GC and GC/MS, 26 pyrazines, 11 pyridines, 9 thiazoles, 6 furans, 8 pyrroles, 5 phenols, 8 aldehydes, 8 hydrocarbons, 7 alcohols, 2 indoles, 3 ketones, 10 acids, 4 nitriles, 7 esters, and 5 others were isolated, identified, and quantified. The total amount of flavor compounds was increased with roasting temperature. Detected flavors could be devided into top(peak No. $1{\sim}91$), middle$(92{\sim}197)$ and last note$(198{\sim}224)$ by rentention time. The top notes(initial content 19.87 ppm) which contain pyrazines and provide representative roasted flavors were increased significantly with roasting temperature. Initial content of middle note(17.72 ppm) was increased to 36.71 ppm at $170^{\circ}C$, to 95.61 ppm at $220^{\circ}C$, and to 138.62 ppm at $230^{\circ}C$. Last note was almost unchanged up to $170^{\circ}C$ and increased at $190^{\circ}C$, whereas it indicated a tendency to decrease at $230^{\circ}C$. Pyrazines such as methylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine which indicate the major components among volatile flavors were increased slightly up to $150^{\circ}C$ and revealed the higher increase than any other components above $170^{\circ}C$. This tendency was also similar to pyridines, thiazoles, and furans. Most of these compounds are assumed to be developed by thermochemical reactions of sesame components by roasting above $170^{\circ}C$. It seemed that a lot of increase in phenols above $210^{\circ}C$ resulted from the production of guaiacol. Acids were almost unchanged up to $190^{\circ}C$, increased at $210^{\circ}C$, and then decreased above $220^{\circ}C$. It seemed to be resulted from pyrolysis of free fatty acids formed from thermal oxidation of oil.

  • PDF