• Title/Summary/Keyword: 2, 3-dioxygenase

Search Result 124, Processing Time 0.027 seconds

Characterization of the Quinoline-Degrading Bacterium Pseudomonas sp. NFQ-1 Isolated from Dead Coal Pit Areas (폐광지역에서 분리한 quinoline 분해 세균인 Pseudomonas sp. NFQ-1의 특성연구)

  • 윤경하;황선영;권오성;오계헌
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.174-179
    • /
    • 2003
  • The bacterium NFQ-1 capable of utilizing quinoline (2,3-benzopyridine) as the sole source of carbon, nitrogen and energy was enriched and isolated from soil samples of dead coal pit areas. Strain NFQ-1 was identified as Pseudomonas nitroreducens NFQ-1 by BIOLOG system, and assigned to Pseudomonas sp. NFO-1. Pseudomonas sp. NFQ-1 was used with the concentration range of 1 to 10 mM quinoline. Strain NFQ-1 could degrade 2.5 mM quinoline within 9 hours of incubation. Initial pH 8.0 in the culture was reduced to 6.8, and eventually 7.0 as the incubation was proceeding. 2-Hydroxyquinoline, the first intermediate of the degradative pathway, accumulated transiently in the growth medium. The highest concentration of quinoline (15 mM) in this work inhibited cell growth and quinoline degradation. Pseudomonas sp. NFQ-1 was able to utilize various quinoline derivatives and aromatic compounds including 2-hydroxyquinoline, p-comaric acid, benzoic acid, p-cresol, p-hydroxybenzoate, protocatechuic acid, and catechol. The specific activity of catechol oxygenases was determined to approximately 184.7 unit/㎎ for catechol 1.2-dioxygenase and 33.19 unit/㎎ for catechol 2,3-dioxygenase, respectively. As the result, it showed that strain NFQ-1 degraded quinoline via mainly orthp-cleavage pathway, and in partial meta-cleavage pathway.

Cloning and Sequenece Analysis of the hpa D Gene Responsible for Homoprotocatechuate 2, 3-Dioxgenae from Pseudomonas sp. DJ-12

  • Lee, Sang-Maha;Chae, Jong-Chan;Kim, Young-Soo;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.334-337
    • /
    • 2001
  • The degradative pathway of homoprotocatechuate (HPC) is the bacterial routhe wherby 3,4-dihydrox-yphenylactic acid is catabolized to pyruvate and succinate by a series of sequential reactions . The HPC is catalzed by homoprotocatechuate 2, 3-dioxygenase(HPC-2,3O) to from 5-carboxymethy1-2-hydroxy-muco semialdehyde. In this study, the hha D gene encoding. HPC, 2, 3O was Cloned from the chromo-somal DNA of Pseudomonas sp. DJ-12 and its nucleotide sequence was analyzed. The open reding frame of hpaD gene was found to be composed of 864 nucleotide pairs and to encode a poypetide with 287 amino acide residues. The deduced amino acid sequence of the HPC-2,3O from Pseudomonas. sp. DJ-12 exhibited 60~64% homology with those of the corresponding enzymes from E. coli. Salmonella enterica, and Klebsiella pneumoniae.

  • PDF

Isolation and Characterization of a Rhodococcus Species Strain Able to Grow on ortho- and para-Xylene

  • Jang Jung Yeon;Kim Dockyu;Bae Hyun Won;Choi Ki Young;Chae Jong-Chan;Zylstra Gerben J.;Kim Young Min;Kim Eungbin
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.325-330
    • /
    • 2005
  • Rhodococcus sp. strain YU6 was isolated from soil for the ability to grow on o-xylene as the sole carbon and energy source. Unlike most other o-xylene-degrading bacteria, YU6 is able to grow on p-xylene. Numerous growth substrate range experiments, in addition to the ring-cleavage enzyme assay data, suggest that YU6 initially metabolizes 0- and p-xylene by direct aromatic ring oxidation. This leads to the formation of dimethylcatechols, which was further degraded largely through meta-cleavage path-way. The gene encoding meta-cleavage dioxygenase enzyme was PCR cloned from genomic YU6 DNA using previously known gene sequence data from the o-xylene-degrading Rhodococcus sp. strain DK17. Subsequent sequencing of the 918-bp PCR product revealed a $98\%$ identity to the gene, encoding meth-ylcatechol 2,3-dioxygenase from DK17. PFGE analysis followed by Southern hybridization with the catechol 2,3-dioxygenase gene demonstrated that the gene is located on an approximately 560-kb megaplasmid, designated pJY J1

Effect of 2-hydroxypropyl-$\beta$-cyclodextrin on Biodegradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromtivorans US6-1 (Novosphingobium pentaromtivorans US6-1에 의한 고분자 방향족 탄화수소 생분해과정에서 2-hydroxypropyl-$\beta$-cyclodextrin의 영향)

  • Kang Ji-Hyun;Kwon Kae Kyoung;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.146-151
    • /
    • 2004
  • Cyclodextrin compounds including 2-hydroxypropyl-β-cyclodextrin(β-HPCD) though to be accelerate the biodegradation of PAHs molecule by increasing solubility of PAHs through detaining PAHs in their's cavity. However, only this mechanism is not sufficient to explain the enhancement of PAHs biodegradation by β-HPCD. To find out possible additional role of β-HPCD in the enhancement of PAHs biodegradation, biodegradation rates of pyrene and benzo[a]pyrene (B[a]P) by a PAHs degrading Novosphingobium pentaromtivorans US6-1 strain were compared between with and without addition of β-HPCD. Changes of bacterial biomass were also measured simultaneously. In addition catechol 1,2-dioxygenase activity was determined depending on pre-incubation conditions. As a result, β-HPCD accelerate the degradation rate of pyrene by strain US6-1 and especially the β-HPCD amendment was obligatory for the degradation of B[a]p. Bacterial biomass was responsible for β-HPCD, however, PAHs compounds such as pyrene and B[a]P did not contribute to the bacterial biomass. Catechol 1,2-dioxygenase specific activity of US6-l cells pre-cultured in MM2 medium containing l% β-HPCD was higher than that of cells pre-cultured in ZoBell medium. The former case also showed similar activity compared to that of cells serially starved in MM2 medium after grown in ZoBell medium. These results imply that the presence of β-HPCD accelerate the degradation of PAHs by increasing the bacterial biomass as well as by increasing the water solubility of PAHs.

  • PDF

Cloning and Expression of pcbCD Genes in Escherichia coli from Pseudomonas sp. DJ-12 (Pseudomonas sp. DJ-12의 pcbCD 유전자의 클로닝과 Escherichia coli에서의 발현)

  • Kim, Chi-Kyung;Sung, Tae-Kyung;Nam, Jung-Hyun;Kim, Chang-Young;Lee, Jae-Koo
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 1994
  • The pcb genes of Pseudomonas sp. DJ-12 coded for the catabolism of polychlorinated biphenyl (PCBs) and biphenyl. The products of the pcbCD genes were 2,3-dihydroxy-4'-chlorobiphenyl dioxygenase and meta-cleavage product (MCP) hydrolase, which acted on degradation of 2,3-dihydroxy-4'-chlorobiphenyl to 4-chlorobenzoate. The pcbCD genes were cloned in E. coli XLl-Blue, and then the pcbD gene was further subcloned. As a metabolite transformed from 2,3-dihydroxybiphenyl by the cloned cell of E coli CU103, benzoate was detected by the resting cell assay. The enzyme activities of 2,3-dihydroxybiphenyl dioxygease and MCP hydrolase produced in the cloned cells E. coli CU103 and CU105 were about 17 and 3 times higher than those of Pseudomonas sp. DJ-12, respectively.

  • PDF

Degradation of Anthracene by a Pseudomonas strain, NGK1

  • Shinde Manohar;Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Pseudomonas sp. NGK1, isolated by naphthalene enrichment culture technique, is capable of degrading anthracene as a sole source of carbon and energy. The organism degraded anthracene through the intermediate formation of 1,2-dihydroxyanthracene, 2-hydroxy-3-naphthoic acid, salicylate, and catechol. The intermediates were isolated and characterized by TLC, spectrophotometry, and HPLC analysis. The cell free extract of anthracene-grown cells showed activities of anthracene dioxygenase, 2-hydroxy-3-naphthylaldehyde dehydrogenae, 2-hydroxy-3-naphthoate hydroxylase, salicylate hydroxylase and catechol 2,3-dioxygenase. The formed catechol as a metabolite is degraded through meta-cleavage with the formation of ${\alpha}$-hydroxymuconic semi-aldehyde.

  • PDF

Identification of the bphC Gene for meta-Cleavage of Aromatic Pollutants from a Metagenomic Library Derived from Lake Waters

  • Moon Mi-Sook;Lee Dong-Hun;Kim Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.393-399
    • /
    • 2004
  • Useful genes can be Screened from various environments by construction of metagenomic DNA libraries. In this study, water samples were collected from several lakes in mid Korea, and analyzed by T-RFLP to examine diversities of the microbial communities. The crude DNAs r were extracted by the SDS-based freezing-thawing method, and then further purified using an $UltraClean^{TM}$ kit (MoBio, USA). The metagenomic libraries were constructed with the DNAs partially digested with EcoR I, BamH I, and Sac II in Escherichia coli DH 10B using the pBACe3.6 vector. About 44.0 Mb of metagenomic libraries were obtained with average inserts 13-15 kb in size. The bphC genes responsible for degradation of aromatic hydrocarbons via mets-cleavage were identified from the metagenomic libraries by colony hybridization using the bphC specific sequence as a probe. The 2,3-dihydroxybiphenyl (2, 3-DHBP) dioxygenase gene (bphC ), capable of degradation of 2,3-DHBP, was cloned and its nucleotide Sequences analyzed. The genes consisted of 966 and 897 base pairs with an ATG initiation codon and a TGA termination codon. The activity of the 2,3-DHBP dioxygenase was highly expressed to 2,3-DHBP and Showed a broad substrate range to 2,3-DHBP, catechol, 3-methylcatechol and 4-methylcatechol. These results in-dicated that the bphC gene identified from the metagenomes derived from lake water might be useful in the development of a potent strain for degradation of aromatic pollutants.

Genetic and Biochemical Characterization of the Biphenyl Dioxygenase from Pseudomonas sp. Strain B4

  • Rodarie, David;Jouanneau, Yves
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.763-771
    • /
    • 2001
  • Biphenyl dioxygenase (BPDO), which catalyzes the first step in the bacterial degradation of biphenyl and polychlorinated biphenyls, was characterized in Pseudomonas sp. B4. The bphA locus containing the four structural genes encoding BPDO were cloned and sequenced. A regulatory gene as well as a putative regulatory sequence were identified upstream of this locus. A transposase-like gene was found within a 1-kb region further upstream, thereby suggesting that the bphA locus may be carried on a transposable element. The three components of the BPDO enzyme have been separately overexpressed and purified from E. coli. The ferredoxin and terminal dioxygenase components showed biochemical properties comparable to those of two previously characterized BPDOs, whereas the ferredoxin reductase exhibited an unusually high lability. The substrate selectivity of BPDO was examined in vivo using resting cell assays performed with mixtures of selected polychlorinated biphenyls. The results indicated that para-substituted congeners were the preferred substrates. In vitro studies were carried out on a BPDO complex where the reductase from strain B4 we replaced by the more stable isoform from Comamonas testosteroni B-356. The BPDO enzyme had a specific activity of $0.26{\pm}0.02 {\mu}mol {min^-1}{mg^-1}\;of\;ISP_{BPH}$ with biphenyl as the substrate. The 2,3-, 4,4'-, and 2,4,4'-chlorobiphenyls were converted to single dihydrodiols, while 2,4'-dichlorobiphenyl gave rise to two dihydrodiols. The current data also indicated that 2,4,4'-trichlorobiphenyl was a better substrate than the 4,4'-dichlorinated congener.

  • PDF

Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘)

  • Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2015
  • We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with $K_{is}$ values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a $K_{is}$ value of 1.57 mM and a $K_{ii}$ value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with $K_{is}$ values of 55.7 mM, 0.22 mM, and 15.64 mM, and $K_{ii}$ values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. $FeCl_{2}$ was the best competitive inhibitor with a $K_{is}$ value of $29{\mu}M$. $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, and $AlCl_{3}$ were also competitive inhibitors with $K_{is}$ values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.