• Title/Summary/Keyword: 1mm 응력

Search Result 540, Processing Time 0.033 seconds

Finite Element Analysis on the Supporting Bone according to the Connection Condition of Implant Prosthesis (임플란트 보철물의 연결 여부에 따른 유한요소응력분석)

  • Kang, Jae-Seok;Jeung, Jei-Ok;Lee, Seung-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The purpose of this study was to compare the stress distribution according to the splinting condition and non-splinting conditions on the finite element models of the two units implant prostheses. The finite element model was designed with the parallel placement of two fixtures ($4.0mm{\times}11.5mm$) on the mandibular 1st and 2nd molars. A cemented abutment and gold screw were used for superstructures. A FEA models assumed a state of optimal osseointegration, as the bone quality, inner cancellous bone and outer 2 mm compact bone was designed. This concluded that the cortical and trabecular bone were assumed to be perfectly bonded to the implant. Splinting condition had 2 mm contact surface and non-splinting condition had $8{\mu}m$ gap between two implant prosthesis. Two group (Splinting and non-splinting) were loaded with 200 N magnitude in vertical axis direction and were divided with subdivision group. Subdivision group was composed of three loading point; Center of central fossa, the 2 mm and 4 mm buccal offset point from the central fossa. Von Mises stress value were recorded and compared in the fixture-bone interface and bucco-lingual sections. The results were as follows; 1. In the vertical loading condition of central fossa, splinting condition had shown a different von Mises stress pattern compared to the non-splinting condition, while the maximum von Mises stress was similar. 2. Stresses around abutment screw were more concentrated in the splinting condition than the non-splinting condition. As the distance from central fossa increased, the stress concentration increased around abutment screw. 3. The magnitude of the stress in the cortical bone, fixture, abutment and gold screw were greater with the 4 mm buccal offset loading of the vertical axis than with the central loading.

The Effect of the diameter and anastomotic angles on the compliance and the stress distribution of the end-to-side anastomosis (직경 및 문합각도가 단측 문합의 컴플라이언스 및 응력분포에 미치는 영향)

  • Han, G.J.;Kim, Y.H.;Kim, H.S.;Ann, S.C.;Jang, W.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.334-337
    • /
    • 1997
  • Von Mises stress and compliance distribution was evaluated using a finite element analysis on the end-to-side anastomosis of an artery with length of $20\sim24mm$, inner diameter of 4mm, thickness of 0.5mm and a PTFE graft with length of 10mm, inner diameter of 2mm, thickness of 0.2mm when the anastomotic angle was taken from $30^{\circ}\sim90^{\circ}$ in every $10^{\circ}$ and the diameter ratio from $0.1\sim1$ in every 0.1. The inner pressure of $1330dyne/mm^2$ was applied inside the 2 conduits. It was found that the compliance whose magnitude is larger on the acute angle anastomotic side than on the acute angle side became larger as the anastomotic angle became smaller and the diameter ratio larger and that the equivalent stress on the acute angle anastomotic side was larger than that on the abtuse angle side and became larger as the anastomotic angle and the diameter ratio became larger.

  • PDF

A photoelastic Stress Analysis of Implant Prosthesis According to Fitness of Super structure (불량 적합 임플란트 보철물의 광탄성 응력 분석)

  • Lim, Hyun-Pil;Heo, Shin-Ok;Kim, Hong-Joo;Park, Sang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • To assess the stress distribution of implant prosthesis induced by intentional misfit using photoelastic model. Stress was measured at the surrounding bone after applying vertical load to the implant. Three implants were placed in each of three photoelastic resin blocks. No misfits were used for the control group, while for the experimental group $100{\mu}m$ misfit after cutting the crown was used. The photoelastic stress analysis was performed. In control group, stress concentration was not shown when the load was not applied, whereas stress concentration was shown only in the loaded part even when load was applied and the stress was distributed in anterior-posterior direction when applying a load in the middle. When intentional misfits were given, stress around the fixture was incurred when tightening the screw even if load was not applied. If the load was applied, stress was concentrated around the implants including areas where the load was applied. In particular, the prosthesis made of UCLA showed more stress concentration as compared with a conical abutment. In the UCLA case, concentration was shown from the apex following through the axis to the cervical area. Prosthesis with misfit makes the stress concentrated though the load was not applied and it induces even more severe stress concentration when the load was applied. This founding demonstrates the importance of the correct prosthesis production.

On the Damping Effects of Helmet Safety with a Corrugation Damper using Taguchi's Optimization Design (다구찌 설계법을 이용한 주름댐퍼를 갖는 헬멧안전의 감쇠효과에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • Using the finite element method and Taguchi's design technique, the displacement in vertical direction, von Mises stress, and strain energy of the corrugation damper have been analyzed as functions of the extruded length and the thickness of the corrugation damper, and the upper and lower corner radii of the damper. The optimized profile design elements of a corrugation damper are very important for increasing a strain energy absorption capacity of a helmet structure, which is attacked by impulsive external forces. In this study, the optimized design data based on the Taguchi's method was computed as a corrugation damper length of L = 20 mm, a damper thickness of t = 2 mm, the upper corner radius of $R_1=4\;mm$, and the lower corner radius of $R_2=3\;mm$. The optimized design parameters of a corrugation damper indicated that the thickness and extruded length of a corrugation damper may affect to increase the strain energy, which absorbs the impact forces of the helmet.

  • PDF

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer (초음속 2차원 2단 혼합층에서 중간층의 역할)

  • Kim, Dongmin;Baek, Seungwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.

Fracture Resistance and Stress Distribution of All Ceramic Crowns with Two Types of Finish Line on Maxillary First Premolar (상악 제1소구치에서 전부도재관의 finish line 형태에 따른 파절강도와 응력 분포에 관한 연구)

  • Lee, Sang-Kwon;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.219-237
    • /
    • 2003
  • he purpose of this study was to compare the fracture resistance of the IPS Empress ceramic crown with 1.0mm width rounded shoulder, which is usually recommended in all ceramic crown, and 0.5mm width chamfer finish lines on the maxillary first premolar. 30 sound maxillary first premolars were selected and then storaged in 5% NaOCl and saline. 15 teeth were performed preparation for each group(1.0mm rounded shoulder, 0.5mm chamfer). After 30 stone dies were made for each group, the IPS Empress ceramic crowns were fabricated and cemented with resin cement(Bistite resin cement, Tokuyama Soda Co. LTD., Japan) on the natural teeth. The cemented crowns were mounted on the positioning jig and the universal testing machine(Zwick Z020, Zwick Co., Germany)was used to measure the fracture strength, with stress loading on the occlusal surface between buccal and lingual cusp. And also, three-dimensional finite element model was used to measure the stress distribution with two types of the finish lines(1.0mm rounded shoulder, 0.5mm chamfer) and two loading conditions(both buccal and lingual cusp inclination, lingual cusp inclination only). The result of the this study were as follows. In the fracture resistance experiment according to the finish line, the mean fracture strength of rounded shoulder(842N) showed higher value than that of the chamfer(590N) (p<0.05). In the three dimensional finite element analysis of all ceramic crown, metal die and natural teeth model did not show any differences in stress distribution between finish lines. Generally, when force was loaded on the occlusal inclination of buccal and lingual cusp, the stress was concentrated on the loading point and the central groove of occlusal surface. When force was loaded only on the occlusal inclination of lingual cusp, the stress was concentrated on the lingual finish line and loading point.

THE EFFECT OF THE DIFFERENCE OF THE IMPLANT FIXTURE AND ABUTMENT DIAMETER FOR STRESS DISTRIBUTION (임프란트 고정체와 지대주 직경의 차이가 응력분포에 미치는 영향)

  • Jung Jong-Won;Lee Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.583-596
    • /
    • 2004
  • Statement of problem : Stress concentration on the neck bone affects the bone resorption, and finally the implant survival. Purpose: In order to examine the stress distribution on the neck bone and prosthesis abutment for implants, decreasing abutment sizes were used. Material and methods : Axisymmetric models were used to obtain the data required. These models were composed of 4mm implants with 3.4mm and 4mm abutments, 5mm implants with 3.4mm and 5mm abutments and 6mm implants with 3.4mm and 6mm abutments. All abutments were designed to received a 10mm high by 10mm diameter gold crown. Functional element analysis was used to obtain these results using data that consisted of 50 N vertical and 45 degree inclination forces. Results : 1. Changing the diameter of the abutment on the implant affects the effect of the inclination forces more than the effect of the vortical forces. 2. Changing the diameter of the abutment on the implant affect the effect of the inclination forces more than the effect of the vertical forces. 3. Experimentation showed that the larger diameter implants provided a decreased neck bone stress, whereas a larger diameter abutment provided a decrease marginal abutment stress. 4. Experimentation showed that the neck bone and abutment received more stress from inclination forces than vertical forces, Conclusions: By decreasing the size of the abutment on the implant we were able to diminishneck bone stress.

Development of Lightweight Auger Planting for Strengthen of Screw Shaft (스크류 축이 보강된 경량식혈기 개발)

  • Kim, J.H.;Kim, K.D.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.62-62
    • /
    • 2017
  • 모터와 스크류를 이용한 경량 식혈기를 처음으로 개발함에 따라 실제 산림의 식재 시험에서 발생될 수 있는 것은 감속기와 스크류의 연결부분의 파괴이다. 이 감속기 축의 파괴는 토양내부의 큰 자갈로 인해 스크류가 낄 경우 식재봉을 좌우로 흔들게 되면 가장 취약한 부분인 스크류와 감속기의 연결부위에 가장 강한 모멘트가 걸리게 된다. 물론 작업자의 부주위가 원인이기도 하지만 감속기(K6G30C. Korea)의 축 지름이 8mm이므로 식재봉을 좌우로 흔들면 굽힘파괴가 일어날 가능성이 높다. 감속기의 축이 파괴가 되지 않게 하는 방법은 재료의 강도가 높은 새로운 감속기를 찾은 일과 기존 감속기의 축을 굽힘응력에 안전하게 대응할 수 있게 설계를 하는 방법이 있다. 본 연구에서는 전자에 대한 조사와 동시에 후자에 대한 설계와 제작을 수행하여 기 제작된 경량식혈기와 비교 분석하였다. 스크류 축의 굽힘응력에 대한 대응 방법으로 감속기 축의 보강방법은 감속기 축에 식재봉으로 부터 굽힘응력이 직접 전달되지 않게 하기 위해 모터 하우징의 하부 위치에 감속기 축을 감싸는 Radial Bearing을 결합하였다. 그리고 스크류의 축은 상단의 지름을 크게 키운 상태로 감속기의 축에 연결하는 방법으로 설계하였다. 이때 식혈봉으로 부터 걸리는 모멘트는 스크류의 상단 지름에 걸리게 되는데 상단부는 모터 하우징의 하단과 단단하게 결합함으로써 감속기 축을 보호하게 되고 또한 감속기 축의 길이에서 Bearing과 스크류 상단부 큰 지름이 각각 반반씩 보호하는 형태로 설계하였다. 이와 같이 감속기의 축을 보강한 경우 종전의 식혈기보다 무게가 무거워지게 된다. 즉, 1차 식혈기 무게는 3.38kgf, 2차 시작기는 3.28kgf, 축 강도가 보강된 3차 시작기는 무게가 3.87kgf로 증가되었다. 따라서 종전보가 약 600g 증가되어 다소 무거운 느낌이 들었다. 여기서 리듐 폴리머 배터리와 가방의 무게 3.23kgf를 부가하면 1차, 2차, 3차 시작기의 무게는 각각 6.61kgf, 6.51kgf, 7.1kgf로 나타났다. 따라서 굽힘응력에 대한 보강의 방안으로 설계된 무게 과다가 현장 시험에서 작업자의 피로도 증가와 작업의 비효율성이 예상되어 포트묘의 현장 식재시에 이에 대한 평가를 수행하여 비교 분석할 예정이다.

  • PDF

Technology of Non-destructive Stress Measurement in Spot Welded Joint using ESPI Method (ESPI법에 의한 스폿 용접부의 비파괴적 응력측정 기술)

  • 김덕중;국정한;오세용;김봉중;유원일;김영호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • In spot welded joint. Electronic Speckle Pattern Interferometry(ESPI) method using the Model 95 Ar laser a video system and an image processor was applied to measure the stress Unlike traditional strain gauges or Moire method, ESPI method has no special surface preparation or attachments and can be measured in-plane displacement with non-contact and real time. In this experiment, specimens are loaded in parallel with a load cell. The specimens are made of the cold rolled steel sheet with 1mm thickness, are attached strain. gauges. This study Provides an example of how ESPI has been used to measure stress and strain inspecimen. The results measured by ESPI are compared with the data which was measured by strain gauge method under tensile testing.

  • PDF

A STUDY OF THE EFFECT OF LOW INTENSITY INITIAL LIGHT CURING ON THE BOND STRENGTH OF RESIN RESTORATION (초기 저광도 광중합이 레진 수복물의 결합강도에 미치는 영향에 관한 연구)

  • Han, Mi-Ran;Kwon, Soon-Won;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.45-53
    • /
    • 2001
  • Recently some studies have shown that low light intensity followed by final cure at high light intensity may result in a smaller marginal gap and may be no negative effect on material properties. The purpose of this study was to evaluate the influence of the initial cure with low intensity on the shear bond strength of dentin and the microhardness of composite resin. Twenty intact bovine teeth were prepared for shear bond strength test and each tooth sectioned to three specimens. The specimens were randomly divided into three groups according to the light intensity and curing time as follows; Group I. $450mmW/cm^2$ 40sec Group II. $300mmW/cm^2$ 20sec and $600mmW/cm^2$ 20sec Gropu III. $250mmW/cm^2$ 20sec and $450mmW/cm^2$ 20sec. Samples of each group were restored with light-cured composite resin after dentin bonding and then the shear bond strength of each specimen were measured using universal testing machine. Ten resin specimens per group were prepared. After 24 hours, the Vickers microhardness value was measured at the top and bottom surfaces. The result are as follows; 1. Mean value of low initial intensity groups(II, III) were higher than the control group(I) in shear bond strength, but no significant difference could be found. 2. No significant difference could be found between three groups in microhardness.

  • PDF