• 제목/요약/키워드: 1D column test

검색결과 155건 처리시간 0.026초

실내모형시험을 통한 Gravel Drain의 배수효과에 관한 연구 (A Study on the Drainage Effects of Gravel Drain by Laboratory Model Test)

  • 천병식;김백영;고용일;여유현;박경원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. D is the diameter of the column. The transient process of pore water pressure with loading and the characteristics of consolidation were studied with the data gained from the measuring instrument place on the surface of the container. The parameter study was performed for the marine clayey soil before and after the test in order to check the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material.

  • PDF

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

공진주 시험을 이용한 섬유보강토의 동적변형특성 (Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests)

  • 장병욱;허준;박영곤;차경섭;우철웅
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF

소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석 (Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting)

  • 김광우;이문섭;김성태;이순제
    • 한국도로학회논문집
    • /
    • 제4권4호
    • /
    • pp.41-52
    • /
    • 2002
  • 본 연구는 아스팔트 콘크리트 포장의 소성변형 추정을 보다 쉽게 하기 위하여 새로운 시험기법인 김테스트의 변형강도 및 시험 장비를 개발함에 있어 적정규격을 선정하기 위한 것이나. 김테스트에서 하중봉의 직경(D) 및 하중봉 하단의 원형처리 반경(r)이 시험결과에 미치는 영향을 파악하기 위하여 다양한 혼합물에 대하여 D와 r을 변화시켜가며 실험을 수행하였다. r에 따른 변형강도 및 변형하중과의 상관관계 분석결과 r=0.5와 1.0cm로 원형 처리한 측정값에서 소성변형과 높은 상관성을 보여주었다. 공시체의 직경(S)은 중요 변인이 아니었으며, 하중봉은 직경 4cm에 반드시 하단을 원형처리를 해야하고 이때의 절삭 반경 r은 1.0cm가 가장 좋은 것으로 나타났다. 통계프로그램 SAS의 STEPWISE 를 이용하여 골재별로 변형강도로부터 소성변형 깊이 및 동적 안정도를 추정하기 위해 모델을 개발하였으며 $R^2$은 0.95이상이 얻어졌다. 향후 보다 많은 실험을 통해 이 시험법의 표준화 연구가 지속적으로 이루어져야 할 것이며, 새로운 배합설계 방법을 개발한다면 본 실험법의 적용을 검토해 볼 필요가 있을 것이다.

  • PDF

수직앵커형 중간철근으로 보강된 고강도 철근콘크리트 보_-기둥 접합부의 소성힌지 확산 (Spreading Beam Poastic Hinging Zone of the High-Strength R/C Beam-Column Joints Using the Vertically Anchored Intermediate Reinforcements)

  • 유영찬;이원호;이리형
    • 콘크리트학회지
    • /
    • 제7권4호
    • /
    • pp.169-179
    • /
    • 1995
  • 본 논문은 고강도 콘크리트($f'_c=700kg/cm^2$)를 사용한 보_기둥 접합부의 소성힌지 확산을 위하여 중간철근을 수직으로 앵커한 수직앵커형 중간철근으로 보 단부를 보강함으로써 보_기둥 접합부에 발생하는 소성힌지를 보 내측으로 1.0d 만큼 확산시키고자 하는 것이다. 실험의 주 변수로는 중간철근의 유물 및 앵커여부로 설정하여 중간철근의 보강형태에 따른 부재의 역학적 거동을 규명하도록 하였다. 실험결과로부터 보 단부의 1.0d부분을 수직앵커형 중간철근으로 보강하면 소성힌지를 1.0d 부분으로 확산할 수 있었으며, 에너지 분산능력도 ACI318-89에 따라 설계한 관례적인 실험체에 비하여 약 1.6배정도 향상되었다.

슬래브가 있는 넓은 보-기둥 접합부의 전단거동 (Shear Behavior of Wide Beam-Column Joints with Slab)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

Gravel Pile의 현장적용을 위한 시험시공 사례연구 (A Case Study on the Application of Gravel Pile in Soft Ground)

  • 천병식;고용일;여유현;김백영;최현석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 연약지반처리위원회 학술세미나
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Test of Headed Reinforcement in Pullout II: Deep Embedment

  • Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.151-159
    • /
    • 2006
  • A total of 32 pullout tests were performed for the multiple headed bars relatively deeply embedded in reinforced concrete column-like members. The objective was to determine the minimum embedment depth that was necessary to safely design exterior beam-column joints using headed bars. The variables for the experiment were embedment depth of headed bar, center-to-center distance between adjacent heads, and amount of supplementary reinforcement. Regular strength concrete and grade SD420 reinforcing steel were used. The results of the test the indicated that a headed bar embedment depth of $10d_b$ was not sufficient to have relatively closely installed headed bars develop the pullout strength corresponding to the yield strength. All the experimental variables, influenced the pullout strength. The pullout strength increased with increasing embedment depth and head-to-head distance. It also increased with increasing amount of supplementary reinforcement. For a group of closely-spaced headed bars installed in a beam-column joint, it is recommended to use column ties at least 0.6% by volume, 1% or greater amount of column main bars, and an embedment depth of $13d_b$ or greater simultaneously, to guarantee the pullout strength of individual headed bars over 125% of $f_y$ and ductile load-displacement behavior.

Effect of Anchorage on Strength of Precast R/C Beam-Column Joints

  • Kim, Kwangyeon
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.55-60
    • /
    • 2000
  • Recently, there is a great demand for precast reinforced concrete (RC) construction methods on the purpose of simplicity in construction. Nishimatsu Construction Company has developed a construction method with precast reinforced concrete members in medium-rise building. In this construction method, how to joint precast members, especially the anchorage of the main bar of beam, is important problem. In this study, the structural performance of exterior joints with precast members was investigated. The parameters of the test specimens are anchorage type of the main bar of beam (U-shape anchorage or anchorage plate) and the ratio of the column axial force to the column strength. Specimens J-3 and J-4 used U-shape anchorage and the ratio of the column axial force of specimen J-4 was higher. On the other hand, specimens J-5 and J-6 used anchorage plate, and the anchorage lengths are 15d and 18d, respectively. Experimental results are summarized as follows; 1) For the joints with beam flexural failure mode, it was found that the maximum strength of specimen with anchorage plate is equal to or larger than that of specimen with conventional U-shaped anchorage if the anchorage length of more than 15d would be ensured, 2) Each specimen shows stable hysteretic curves and there were no notable effects on the hysteretic characteristics and the maximum strength caused by the anchorage method of beam main bar and the difference of column axial stress level.

  • PDF

용융 메탈 잉크젯 시스템 (Molten Metal Inkjet System)

  • 이택민;강태구;양정순;조정대;김광영;김동수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.585-586
    • /
    • 2006
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. Based on the theoretical analysis, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in the high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the Ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about $65-70{\mu}m$, 145-180 pl and 4m/sec. We also fabricate vertical and inclined 3D micro column structures using the present molten metal inkjet system. The measured geometries of the micro column structures are about height of $2,100{\mu}m$, diameter of $200{\mu}m$ and aspect ratio of 10.5 for vertical micro column and $1,400{\mu}m$ of height and $150{\mu}m$ of diameter for $65^{\circ}$-inclined micro column, respectively.

  • PDF