• Title/Summary/Keyword: 18s rDNA

Search Result 474, Processing Time 0.028 seconds

Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls (통계학적 방법을 사용한 해양미생물 Bacillus velezensis A-68균주의 섬유소 분해효소 생산 조건 최적화)

  • Kim, Bo-Kyung;Kim, Hye-Jin;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.757-769
    • /
    • 2013
  • A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater, identified as Bacillus velezensis by analyses of 16S rDNA and partial sequences of the gyrA, and designated as B. velezensis A-68. The optimal conditions for production of CMCase by B. velezensis A-68 were established using response surface methodology (RSM). The optimal concentrations of rice hulls and yeast extract, and initial pH of the medium for cell growth were 60.2 g/l, 7.38 g/l, and 7.18, respectively, whereas those for production of CMCase were 50.0 g/l, 5.00 g/l, and 7.30. The analysis of variance (ANOVA) implied that the most significant factor for cell growth as well as production of CMCase was yeast extract. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ in the medium for cell growth were 7.50, 1.00, 0.10, and 0.80 g/l, respectively, which were the same as those for production of CMCase. The optimal temperatures for cell growth and production of CMCase were 30 and $35^{\circ}C$, respectively. The maximal production of CMCase under optimized conditions was 83.8 U/ml, which was 3.3 times higher than that before optimization. In this study, rice hulls, agro-byproduct, were developed as a substrate for production of CMCase and time for production of CMCase was reduced to 3 days using a newly isolated marine bacterium.

Antimicrobial Drug Resistance and R-plasmid of Salmonella species (Salmonella 균속의 항균제 내성 및 R-plasmid)

  • Lee Myung-Won;Chung Tae-Wha;Lee Yun-Tai;Kang Jeung-bok
    • Journal of environmental and Sanitary engineering
    • /
    • v.3 no.2 s.5
    • /
    • pp.23-41
    • /
    • 1988
  • Two hundred and eighty-six strains of Salmonella species were isolated from the twelve provincial institutes of health and 19 general hospitals of urban and rural areas in Korea from January to December in 1986. The antimicrobial susceptibility test of these cultures was done by the method of agar diluton. The resistance frequency of Salmonella cultures was $29.7\%$. Among these resistant cultures, the most provalent resistance pattern of Salmonella was ampicillin, carbenicillin, chloramphenicol, tetracycline, streptomycin, and its resistance frequency was $15\%$. In plasmid profile of resistance strains, average number of plasmid harboring in Salmonella was 1-4 and molecular weight of plasmid ranged 1.6 to 70 megadalton (Md.). Plasmid pattern of strains isolated from Seoul and Kang-won showed the same or similar profiles. Plasmid pattern was identical in the same resistance pattern.

  • PDF

Isolation and Characterization of Marine Bacterial Strain Degrading Fucoidan from Korean Undaria pinnatifida Sporophylls

  • Kim, Woo-Jung;Kim, Sung-Min;Lee, Yoon-Hee;Kim, Hyun-Guell;Kim, Hyung-Kwon;Moon, Seong-Hoon;Suh, Hyun-Hyo;Jang, Ki-Hyo;Park, Yong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.616-623
    • /
    • 2008
  • In spite of an increasing interest in fucoidans as biologically active compounds, no convenient commercial sources with fucoidanase activity are yet available. A marine bacterial strain that showed confluent growth on a minimal medium containing fucoidan, prepared from Korean Undaria pinnatifida sporophylls, as the sole carbon source was isolated and identified based on a 16S rDNA sequence analysis as a strain of Sphingomonas paucimobilis, and named Sphingomonas paucimobilis PF-1. The strain depolymerized fucoidan into more than 7 distinct low-molecular-mass fucose-containing oligosaccharides, ranging from 305 to 3,749 Da. The enzyme activity was shown to be associated with the whole cell, suggesting the possibility of a surface display of the enzyme. However, a whole-cell enzyme preparation neither released the monomer L-fucose from the fucoidan nor hydrolyzed the chromogenic substrate p-nitrophenyl-${\alpha}$-L-fucoside, indicating that the enzyme may be an endo-acting fucoidanase rather than an ${\alpha}$-L-fucosidase. Therefore, this would appear to be the first report on fucoidanolytic activity by a Sphingomonas species and also the first report on the enzymatic degradation of the Korean Undaria pinnatifida sporophyll fucoidan. Moreover, this enzyme activity may be very useful for structural analyses of fucose-containing polysaccharides and the production of bioactive fucooligosaccharides.

Modified T-RFLP Methods for Taxonomic Interpretation of T-RF

  • Lee, Hyun-Kyung;Kim, Hye-Ryoung;Mengoni, Alessio;Lee, Dong-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.624-630
    • /
    • 2008
  • Terminal restriction fragment length polymorphism (T-RFLP) is a method that has been frequently used to survey the microbial diversity of environmental samples and to monitor changes in microbial communities. T-RFLP is a highly sensitive and reproducible procedure that combines a PCR with a labeled primer, restriction digestion of the amplified DNA, and separation of the terminal restriction fragment (T-RF). The reliable identification of T-RF requires the information of nucleotide sequences as well as the size of T-RF. However, it is difficult to obtain the information of nucleotide sequences because the T-RFs are fragmented and lack a priming site of 3'-end for efficient cloning and sequence analysis. Here, we improved on the T-RFLP method in order to analyze the nucleotide sequences of the distinct T-RFs. The first method is to selectively amplify the portion of T-RF ligated with specific oligonucleotide adapters. In the second method, the termini of T-RFs were tailed with deoxynucleotides using terminal deoxynucleotidyl transferase (TdT) and amplified by a second round of PCR. The major T-RFs generated from reference strains and from T-RFLP profiles of activated sludge samples were efficiently isolated and identified by using two modified T-RFLP methods. These methods are less time consuming and labor-intensive when compared with other methods. The T-RFLP method using TdT has the advantages of being a simple process and having no limit of restriction enzymes. Our results suggest that these methods could be useful tools for the taxonomic interpretation of T-RFs.

Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Lee, Jung-Hyun;Oh, Young-Sook;Bae, Kyung-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.128-135
    • /
    • 1999
  • Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25$^{\circ}C$. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30$^{\circ}C$, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.

  • PDF

Community Structure of Arbuscular Mycorrhizal Fungi in the Islands of Chungnam, Korea (충남 섬 지역 근권 토양의 수지상균근균 군집 구조)

  • Lee, Jeong-Youn;Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • Five islands (Sinjindo, Mado, Daenanjido, Wonsando, and Sapsido) and the coastal area (Muchangpo) in Chungnam, Korea, were selected to determine the diversity of arbuscular mycorrhizal (AM) fungi. Soil-inhabiting AM fungi were isolated and identified on the basis of morphological characteristics and sequence analyses of 18s rDNA. The differences in the fungal community structures were compared among sites. As a result, 24 species of AM fungi were identified, of which two species of AM fungi, Acaulospora brasiliensis and Redeckera fulvum, were isolated for the first time in Korea. This study revealed that AM fungal spore abundance was low and the genus Acaulospora was dominant in most of the islands. AM fungal community structures in five Islands were highly similar. However, the coastal area, Muchangpo, had different AM fungal community structure from the islands.

A Horsehair Worm, Gordius sp. (Nematomorpha: Gordiida), Passed in a Canine Feces

  • Hong, Eui-Ju;Sim, Cheolho;Chae, Joon-Seok;Kim, Hyeon-Cheol;Park, Jinho;Choi, Kyoung-Seong;Yu, Do-Hyeon;Yoo, Jae-Gyu;Park, Bae-Keun
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.719-724
    • /
    • 2015
  • Nematomorpha, horsehair or Gordian worms, include about 300 freshwater species in 22 genera (Gordiida) and 5 marine species in 1 marine genus (Nectonema). They are parasitic in arthropods during their juvenile stage. In the present study, the used gordian worm was found in the feces of a dog (5-month old, male) in July 2014. Following the worm analysis using light and scanning electron microscopes, the morphological classification was re-evaluated with molecular analysis. The worm was determined to be a male worm having a bi-lobed tail and had male gonads in cross sections. It was identified as Gordius sp. (Nematomorpha: Gordiidae) based on the characteristic morphologies of cross sections and areole on the cuticle. DNA analysis on 18S rRNA partial sequence arrangements was also carried out, and the gordiid worm was assumed to be close to the genus Gordius based on a phylogenic tree analysis.

In vitro Evaluation of Different Feeds for Their Potential to Generate Methane and Change Methanogen Diversity

  • Kim, Seon-Ho;Mamuad, Lovelia L.;Jeong, Chang-Dae;Choi, Yeon-Jae;Lee, Sung Sill;Ko, Jong-Youl;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1698-1707
    • /
    • 2013
  • Optimization of the dietary formulation is the most effective way to reduce methane. Nineteen feed ingredients (brans, vegetable proteins, and grains) were evaluated for their potential to generate methane and change methanogen diversity using an in vitro ruminal fermentation technique. Feed formulations categorized into high, medium and low production based on methane production of each ingredient were then subjected to in vitro fermentation to determine the real methane production and their effects on digestibility. Methanogen diversity among low, medium and high-methane producing groups was analyzed by PCR-DGGE. The highest methane production was observed in Korean wheat bran, soybean and perilla meals, and wheat and maize of brans, vegetable protein and cereal groups, respectively. On the other hand, corn bran, cotton seed meal and barley led to the lowest production in the same groups. Nine bacteria and 18 methanogen 16s rDNA PCR-DGGE dominant bands were identified with 83% to 99% and 92% to 100% similarity, respectively. Overall, the results of this study showed that methane emissions from ruminants can be mitigated through proper selection of feed ingredients to be used in the formulation of diets.

Isolation of an Isocarbophos-Degrading Strain of Arthrobacter sp. scl-2 and Identification of the Degradation Pathway

  • Li, Rong;Guo, Xinqiang;Chen, Kai;Zhu, Jianchun;Li, Shunpeng;Jiang, Jiandong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1439-1446
    • /
    • 2009
  • Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. The strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. The strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a non detectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2-dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

Morphologic and Genetic Evidence for Mixed Infection with Two Myxobolus Species (Myxozoa: Myxobolidae) in Gray Mullets, Mugil cephalus, from Korean Waters

  • Kim, Wi-Sik;Kim, Jeong-Ho;Oh, Myung-Joo
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.3
    • /
    • pp.369-373
    • /
    • 2013
  • The present study was performed to trace the decisive evidence for mixed infection of 2 Myxobolus species, M. episquamalis and Myxobolus sp., in the gray mullet, Mugil cephalus, from Korean waters. Mullets with whitish cyst-like plasmodia on their scales were collected near a sewage plant in Yeosu, southern part of Korea, in 2009. The cysts were mainly located on scales and also found in the intestine. The spores from scales were oval in a frontal view, tapering anteriorly to a blunt apex, and measured $7.2{\mu}m$ (5.8-8.0) in length and $5.3{\mu}m$ (4.7-6.1) in width. Two polar capsules were pyriform and extended over the anterior half of the spore, measuring $3.5{\mu}m$ (2.3-4.8) in length and $2.0{\mu}m$ (1.5-2.2) in width. In contrast, the spores from the intestine were ellipsoidal, $10.4{\mu}m$ (9.0-11.9) in length and $8.4{\mu}m$ (7.3-10.1) in width. The polar capsules were pyriform but did not extend over the anterior half of the spore, $3.7{\mu}m$ (2.5-4.5) in length and $2.2{\mu}m$ (1.8-2.9) in width. The nucleotide sequences of the 18S rDNA gene of the 2 myxosporean spores from scales and intestine showed 88.1% identity to each other and 100% identity with M. episquamalis and 94.5% identity with M. spinacurvatura from mullet, respectively. By the above findings, it is first confirmed that mullets from the Korean water are infected with 2 myxosporean species, M. episquamalis and Myxobolus sp.