• Title/Summary/Keyword: 18GHz band

Search Result 341, Processing Time 0.026 seconds

Design and Fabrication of Stratified Microwave Absorbing Structure Consisted of Glass/Epoxy - Resistive Sheet - Foam

  • Choi, Won-Ho;Shin, Jae-Hwan;Song, Tae-Hoon;Lee, Won-Jun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.225-230
    • /
    • 2014
  • In this study, a novel microwave absorber which consists of a structural part, a resistive sheet, and a low dielectric layer is proposed. Unlike the conventional Salisbury screen, a newly proposed absorber is capable of a range of absorbing performance, from narrowband to broadband. In the case of the narrowband absorber, the fabricated absorber with optimized design parameters has a strong resonance at 9.25 GHz and reflection loss of -44 dB with satisfying the -10 dB absorption in whole X-band (8.2 GHz~12.4 GHz). For the broadband absorber design, the reflectivity was minimized in the considered frequency ranges. The designed absorber showed two weak resonances near 6.5 GHz and 16.5 GHz and satisfied the -10 dB absorption from C-band to Ku-band (4 GHz~18 GHz). The measured reflection loss of fabricated absorber was well matched with simulation results, though the measurement was only performed on X-band. For the Salisbury screen to be capable of broadband absorption, it should be stacked multiply in a structure known as the Jaumann absorber. However, for the microwave absorber presented here, broadband as well as narrowband capabilities can be implemented without a change of the structure.

A Wideband Inductorless LNA for Inter-band and Intra-band Carrier Aggregation in LTE-Advanced and 5G

  • Gyaang, Raymond;Lee, Dong-Ho;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.917-924
    • /
    • 2019
  • This paper presents a wideband low noise amplifier (LNA) that is suitable for LTE-Advanced and 5G communication standards employing carrier aggregation (CA). The proposed LNA encompasses a common input stage and a dual output second stage with a buffer at each distinct output. This architecture is targeted to operate in both intra-band (contiguous and non-contiguous) and inter-band CA. In the proposed design, the input and second stages employ a gm enhancement with resistive feedback technique to achieve self-biasing, enhanced gain, wide bandwidth as well as reduced noise figure of the proposed LNA. An up/down power controller controls the single input single out (SISO) and single input multiple outputs (SIMO) modes of operation for inter-band and intra-band operations. The proposed LNA is designed with a 45nm CMOS technology. For SISO mode of operation, the LNA operates from 0.52GHz to 4.29GHz with a maximum power gain of 17.77dB, 2.88dB minimum noise figure and input (output) matching performance better than -10dB. For SIMO mode of operation, the proposed LNA operates from 0.52GHz to 4.44GHz with a maximum voltage gain of 18.30dB, a minimum noise figure of 2.82dB with equally good matching performance. An $IIP_3$ value of -6.7dBm is achieved in both SISO and SIMO operations. with a maximum current of 42mA consumed (LNA+buffer in SIMO operation) from a 1.2V supply.

A Study on Design of a super wide-band EM wave absorber for a general purpose anechoic chamber (전파무향실용 초광대역 전파흡수체 설계에 관한 연구)

  • Kim, Dae-Hun;Kim, Dong-Il
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.415-420
    • /
    • 2005
  • To construct an anechoic chamber for EMI test satisfying some international standards, it has been recognized that the absorption characteristics of the EM wave absorber must have more than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics was proposed and designed in order to satisfy the above requirements by using the EMCM[1]. As a result, the proposed absorber has absorption characteristics more than 20 dB over the frequency band from 30 MHz to more than 20 GHz.

  • PDF

A 10-GHz Band LC-CMOS QVCO (10 GHz 대역 LC-CMOS QVCO)

  • Koo, Kwang-Hoe;Kim, Chang-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.417-418
    • /
    • 2008
  • A quadrature voltage controlled oscillator(QVCO) with MOS-varactors has been fabricated for X-band applications. The QVCO consists of two cross -coupled differential cores and buffer amplifiers, which has fabricated in TSMC $0.18{\mu}m$ CMOS process. The QVCO exhibits a frequency tuning range from 8.38 GHz to 10.62 GHz. The phase noise is -88 dBc/Hz at 1 MHz-offset frequency. The total bias current is 25 mA including four buffer amplifiers.

  • PDF

A CMOS Downconversion Mixer for 2.4GHz ISM band Applications

  • Lee, Seong-Woo;Chae, Yong-Doo;Woong Jung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.77-81
    • /
    • 2002
  • This paper demonstrates a CMOS downconversion mixer for 2.4GHz ISM band applications. The mixer, implemented in a 0.18um CMOS process, is based on the CMOS Gilbert Cell mixer, With a 2.5GHz local oscillator and a 2.45GHz RF input, the measurement results exhibit power conversion gam of -6dB, IIP3 of -6dBm, input $P_{-1dB}$ of -15 dBm, and power dissipation in mixer core of 2.7 mW with 0㏈m LO power and 1.8V supply voltage.

  • PDF

Design of a $3.1{\sim}10.6GHz$ CMOS Power Amplifier for UWB Application (UWB 응용을 위한 $3.1{\sim}10.6GHz$ CMOS 전력증폭기 설계)

  • Park, J.K.;Shim, S.M.;Park, J.T.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.193-194
    • /
    • 2007
  • This paper presents the design of a power amplifier for full-band UWB application systems using a CMOS 0..18um technology. A wideband RLC filter and a multilevel RLC matching scheme are utilized to achieve the wideband input/output matching. Both the cascade and cascode stage are used to increase the gain and to achieve gain flatness. Simulation results show that the designed amplifier provides a power gain greater than 10 dB throughout the UWB full-band(3.1-10.6GHz) and an input P1dB of -1.2dBm at 6.9GHz. It consumes 35.8mW from a 1.8V supply.

  • PDF

LTE Spectrum Policy: Focused on the OECD 12 Countries (이동통신 LTE 주파수 정책: 주요국 사례를 중심으로)

  • Jun, Soo-Yeon;Jeong, In-Jun
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.1-18
    • /
    • 2014
  • Recently, many of the mobile network operators or telcos are introducing the LTE service in order to effectively cope with an explosive increasing mobile traffics due to an expansion of the use of smart phones. The 1.8GHz, 2.6GHz, and 800MHz band classes are most widely used for LTE. In particular, the 1.8GHz band class is the most useful one in terms of the reusability of the existing (2G) network, global harmonization, bandwidth, eco-system of equipments and devices, and so on. In recent years, major countries in the world have allocated the 1.8GHz band spectrum in a wide bandwidth unit suitable for the upcoming LTE-Advanced service. This paper surveyed the 1.8GHz band spectrum allocation policies of the 12 OECD countries, including Republic of Korea. From the survey, we have found that they rebuilt or refarmed the existing holders' bands, recovered the public (i.e., military)-use bands, and allocated the bands in a wide bandwidth and in an equal or similar size.

A Study on the Design of Ku-band Mixer Using a HEMT (HEMT를 이용한 Ku-band 혼합기의 설계에 관한 연구)

  • 성혁제;구자건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.944-950
    • /
    • 1993
  • Diodes and GaAs have been commonly used in a mixer design until recently. However, diodes are not preferred to use at the front-end of DBS receiver due to the conversion loss large noise. HEMT has larger conversion gain and better noise characteristics comparing with GaAs MESFET. This paper describes the design procedure, structure, and performance of a mixer, utilizaing HEMT designed by OKI Co. . A mixer configuration in which the local oscillator(LO) signal is applied to the gate is used. When the LO power is 0.01 dBm, the conversion gain of 3.7dB is obtained at IF and the 3 dB bandwidth is 400MMz.

  • PDF

Design and Implementation of Single-Feed Dual-Band Circular Polarization Triangular Antenna for Reception of GPS and DMB Signals (GPS와 DMB 신호 수신을 위한 단일 급전 이중 대역 원형 편파 삼각 패치 안테나 설계 및 구현)

  • Lee, Won-Kew;Kim, Sung-Min;Yang, Woon-Gen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.893-902
    • /
    • 2005
  • We propose a novel single-feed triangular patch antenna with bar-type slots for dual-band circular polarization operation. And also propose a H-type slotted triangular patch antenna to enhance the ratio of the resonance frequencies. 3 cases of desist examples with bar-type slots were investigated and also 4 cases of H-slotted antennas were investigated to meet the dual-band requirement for GPS(Global Positioning System) and DMB(Digital Multimedia Broadcasting). One suitable design example was implemented and measured. Simulation results of the design example for GPS and DMB system show that axial ratio and maximum gain are 3.80 dB, 8.85 dBi for low-band at 1.575 GHz and 2.02 dB, 8.60 dBi for high-band at 2.642 GHz, respectively. Measured results of the implemented antenna show that $S_{11}$ is -12.43 dB for low-band at 1.575 GHz and less than -18.75 dB for high-band, respectively.