• Title/Summary/Keyword: 18 GHz

Search Result 787, Processing Time 0.031 seconds

Design of a 5.2GHz/2.4GHz Dual band CMOS Frequency Synthesizer for WLAN (WLAN을 위한 5.2GHz/2.4GHz 이중대역 주차수 합성기의 설계)

  • Kim, Kwang-Il;Lee, Sang-Cheol;Yoon, Kwang-Sub;Kim, Seok-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.134-141
    • /
    • 2007
  • This paper presents a frequency synthesizer(FS) for 5.2GHz/2.4GHz dual band wireless applications which is designed in a standard $0.18{\mu}m$ CMOS1P6M process. The 2.4GHz frequency is obtained from the 5.2GHz output frequency of Voltage Controlled Oscillator (VCO) by using the Switched Capacitor (SC) and the divider-by-2. Power dissipations of the proposed FS and VCO are 25mW and 3.6mW, respectively. The tuning range of VCO is 700MHz and the locking time is $4{\mu}s$. The simulated phase noise of PLL is -101.36dBc/Hz at 200kHz offset frequency from 5.0GHz with SCA circuit on.

Design and Fabrication of Wideband DFD Phase Correlator for 6.0~18.0 GHz Frequency (6.0~18.0 GHz 주파수용 광대역 DFD 위상 상관기 설계 및 제작)

  • Choi, Won;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • This paper has presented the design and fabrication of phase correlator for wideband digital frequency discriminator (DFD) operating over the 6.0 to 18.0 GHz frequency range. Fabricated DFD phase correlator has been measured I or Q output signal, and analyzed frequency discrimination error. The operation of the proposed mixer type correlator has been analyzed by deriving some analytic equations. To design the phase correlator, this paper has modeled and simulated IQ mixer and 8-way power divider by using RF simulation tool. Designed phase correlator has fabricated and measured. The phase error and frequency discrimination error have been presented using by measured I and Q output signal. Over the 6.0~18.0 GHz range, the root mean square(RMS) phase error is $4.81^{\circ}$, RMS and frequency discrimination error is 1.49 MHz, RMS.

Performance of X-Band Amplifier with Coupling Method (X-band 증폭기의 결합방법에 따른 특성 비교)

  • 조광래;윤현보;진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.3
    • /
    • pp.216-220
    • /
    • 1988
  • The design and performance of 12GHz low-noise amplifierwith GaAs MESFET and microstrip line are described. It contains DC blocks with symmetric line and chip capacitor, respectively. The low-noise amplifier with chip capacitor and DC block exhibits a 8-11 dB gain over 11.8-12.1 GHz and 16-18dB gain over 12.16-12.19GHz, respectively.

  • PDF

Implementation of Broadband Printed Sleeve Monopole Antenna (광대역 프린티드 슬리브 모노폴 안테나의 구현)

  • Choe, Gwang-Je;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.245-250
    • /
    • 2014
  • This paper presents the broadband printed sleeve-monopole antenna implementing the sleeve monopole structure in the form of PCB. In the proposed antenna, the antenna performance was improved by the diameter variation of the radiator, the length variation of the sleeve, and the variation of the diameter of the sleeve conductor. HFSS simulator of ANSYS corp. was used in order to confirm the antenna parameter characteristic. According to the simulation results, the VSWR was less than 2 for the range of 2.12GHz~3.18GHz. The frequency bandwidth is 1.08GHz. The frequency range of the actual fabricated antenna was 2.0GHz~3.55GHz, the frequency bandwidth is 1.55GHz. The maximum gain was 1.64dBi. The proposed antenna was $56{\times}5{\times}1.6mm$ in size. The utilization possibility of the broadband printed sleeve-monopole antenna could be confirmed according to compare and analyze the simulation and measurement data.

Frequency Characteristics of 2-Layer Spiral Planar Inductor (2층 나선형 박막 인덕터의 주파수 특성)

  • Kim, Jae-Wook;Ryu, Chang-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4101-4106
    • /
    • 2011
  • In this study, we propose that the structures of 2-layer spiral planar inductors have a lower spiral coil and via increasing inductance in limited possession are and confirm the frequency characteristics. The structures of inductors have Si thickness of $300{\mu}m$, $SiO_2$ thickness of $7{\mu}m$. The width of Cu coils and the space between segments have $20{\mu}m$, respectively. The number of turns of coils have 3. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The 2-layer spiral planar inductors have inductance of 3.2nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 8.2 at 2.5 GHz, SRF of 5.8 GHz. Otherwise, 1-layer spiral planar inductors have inductance of 1.5nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18 at 8 GHz, SRF of 19.2 GHz.

Design and Manufacture of Triple-Band Antennas with Two Branch Line and a Vertical Line for WLAN/WiMAX system applications (2개 분기선로와 수직 선로를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Choi, Tae-Il;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2019
  • In this paper, an antenna applicable to WLAN and WiMAX frequency bands is designed, fabricated, and measured. The proposed antenna is designed to have two branch strip line in the patch plane and a rectangular slit in the ground plane based on microstrip feeding for triple band characteristics and added a vertical strip in the ground plane to enhance impedance bandwidth characteristics. The proposed antenna is designed on a substrate with a relative permittivity of 4.4, a thickness of 1.0 mm, and has a size of $18.0mm(W1){\times}37.3mm$ (L4+L5+L7). From the fabricated and measured results, impedance bandwidths of 480 MHz (2.32 to 2.80 GHz) for 2.4/2.5 GHz band, 810 MHz (3.22 to 4.03 GHz) for 3.5 GHz band, and 1,820 MHz (5.05 to 6.87 GHz) for 5.0 GHz band were obtained based on the impedance bandwidth. Measured 3D pattern and gains are displayed.

A 0.12GHz-1.4GHz DLL-based Clock Generator with a Multiplied 4-phase Clock Using a 0.18um CMOS Process

  • Chi, Hyung-Joon;Lee, Jae-Seung;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.264-269
    • /
    • 2006
  • A $0.12GHz{\sim}1.4GHz$ DLL-based clock generator with the capability of multiplied four phase clock generation was designed using a 0.18um CMOS process. An adaptive bandwidth DLL with a regulated supply delay line was used for a multiphase clock generation and a low jitter. An extra phase detector (PD) in a reference DLL solves the problem of the initial VCDL delay and achieves a fast lock time. Twice multiplied four phase clocks were generated at the outputs of four edge combiners, where the timing alignment was achieved using a coarse lock signal and the 10 multiphase clocks with T/8 time difference. Those four clocks were combined one more time using a static XOR circuit. Therefore the four times multiplication was achieved. With a 1.8V supply, the rms jitter of 2.1ps and the peak-to-peak jitter of 14.4ps were measured at 1.25GHz output. The operating range is $0.12GHz{\sim}1.4GHz$. It consumes 57mW and occupies 450*325um2 of die area.

Antenna for EMI Site Validation above 1 GHz (1 GHz 이상의 EMI 시험장 적합성 평가용 안테나)

  • Kong, Sung-Sik;Chung, Sam-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.65-66
    • /
    • 2006
  • In this paper, we designed and fabricated a broadband antenna for EMI site validation above 1 GHz. To develop the antenna which is satisfied omni-directional radiation pattern and broadband characteristics required by CISPR, we designed biconical type with cylindrical load. The developed antenna has good characteristics of the radiation patterns and VSWR<2 the frequency range from 1 GHz to 18 GHz.

  • PDF

Design of Dual-band Monopole Antenna for WLAN and UWB Applications (WLAN 및 UWB 응용을 위한 이중 대역 모노폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.811-817
    • /
    • 2014
  • In this paper, a design method for a dual-band monopole antenna operating in the bands of 2.45 GHz WLAN and UWB is studied. A monopole antenna operating in UWB band is first designed, and a slot is inserted on the monopole to operate in 2.45 GHz WLAN band. The optimized dual-band monopole antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a dual-band characterisitc in WLAN and UWB bands with the frequency bands of 2.35-2.50 GHz and 2.99-11.82 GHz for a VSWR < 2. Measured gain is 1 dBi at 2.45 GHz, and ranges 1.5-4.6 dBi in the frequency band of 3.1-10.6 GHz.

77 GHz Waveguide VCO for Anti-collision Radar Applications (차량 충돌 방지 레이더 시스템 응용을 위한 77 GHz 도파관 전압 조정 발진기)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1652-1656
    • /
    • 2014
  • In this work, we demonstrated a 77 GHz waveguide VCO with transition from WR-12 to WR-10 for anti-collision radar applications. The fabricated waveguide VCO consists of a GaAs-based Gunn diode, a varactor diode, a waveguide transition, and two bias posts for operating as a LPF and a resonator. The cavity is designed for fundamental mode at 38.5 GHz and operated at second hormonic of 77 GHz. The waveguide transition has a 1.86 dB of insertion loss and -30.22 dB of S11 at the center frequency of 77 GHz. The fabricated VCO achieves an oscillation bandwidth of 870 MHz. Output power is from 12.0 to 13.75 dBm and phase noise is -100.78 dBc/Hz at 1 MHz offset frequency from the carrier.