• Title/Summary/Keyword: 16s rRNA 유전자

Search Result 342, Processing Time 0.019 seconds

Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure (우분 적용을 위한 Bacillus subtilis SRCM 101269의 분리 및 특성 연구)

  • Jeon, SaeBom;Oh, HyeonHwa;Uhm, Tai-Boong;Cho, Jae-Young;Yang, Hee-Jong;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • Bacillus subtilis SRCM 101269 having safety and amo gene isolated from Korean traditional fermented food and their investigated characterization to apply the cow manure such as cellulase and xylanase activities, 16S rRNA sequencing, and ability of removal of livestock manure odor. Cow manure application results for the removal of livestock manure odor, the ammonia gas was reduced more than two-folder compared to the control group after 6 days, and reduced to less than 10 ppm after 9 days. In the case of cow manure added fowl droppings and other wood-based mixture components, ammonia gas maintained constant after 3 days of fermentation. However, in the case of sample inoculated B. subtilis SRCM 101269, ammonia gas reduced in course of fermentation time, and concentration of hydrogen sulfide also reduced for 65 ppm. Changes of nitrite concentration according to fermentation time no showed different for cow manure, however nitrite concentration in mixed livestock manure increased when compared to control. And then sulfate concentration in cow manure decreased, and no showed different when compared to the initial fermentation. No apparent change of sulfate concentration in mixed livestock manure detected. Through the previously studies, B. subtilis SRCM 101269 has high potential in industrial application manufacturing the cow manure as removal of livestock manure odor.

Isolation and Characterization of 𝛽-Glucosidase-Producing Yeast, Rhodotorula sp. GYP-1 (𝛽-Glucosidase 생성 효모 Rhodotorula sp. GYP-1의 분리 및 특성)

  • Hyun-Soo Roh;Min-Young Kwon;Sol-Bi Kim;Jae-Eun Cho;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1126-1135
    • /
    • 2023
  • Nine microbial strains were isolated from the byproduct of ginseng processing and field of ginseng cultivation. Two strains among them were confirmed. Phylogenetic analysis of these 𝛽-Glucosidase strains confirmed that strain GYP-1 belongs to the Rhodotorula and strain GYP-3-3 belong to genus Brachybacterium. Rhodotorula sp. GYP-1 was finally selected due to its high biomass production. The 𝛽-Glucosidase activity of Rhodotorula sp. GPY-1 was assessed at 30 ℃, and Higher than 70% of the enzyme activity was maintained at the temperature range of 20-40℃. Although the optimum pH for the highest enzyme activity was pH 5.0, the enzyme was stable throughout the pH range of 5.0-8.0. In addition, Rhodotorula sp. demonstrated antifungal activity against the ginseng root rot disease caused by Botrytis.