• Title/Summary/Keyword: 16s rRNA 유전자

Search Result 343, Processing Time 0.035 seconds

Characterization of Agarase from an Isolated Marine Bacterium, Simiduia sp. SH-1 (해양성 Simiduia sp. SH-1 균주의 분리 및 한천분해효소의 특성조사)

  • Lee, Sol-Ji;Oh, Soo-Jeong;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1273-1279
    • /
    • 2015
  • Agarase from a novel agar-degrading bacterium isolated from seawater in Namhae at Gyeongsangnamdo province of Korea was characterized. The SH-1 strain was selected from thousands of colonies on Marine agar 2216 media. Almost full 16S rRNA gene sequence of the agarolytic SH-1 strain showed 99% similarity with that of bacteria of Simiduia genus and named as Simiduia sp. SH-1. Agarase production was growth related, and activity was declined from stationary phase. Secreted agarase was prepared from culture media and characterized. It showed maximum activity of 698.6 units/L at pH 7.0 and 30℃ in 20 mM Tris-HCl buffer. Agarase activity decreased as the temperature increased from an optimum of 30℃, with 90% and 75% activity at 40℃ and 50℃, respectively. Agarase was not heat resistant. Slightly lower agarase activity was observed at pH 6.0 than at pH 7.0, without statistical difference, and 80% and 75% activity were observed at pH 5.0 and 8.0, respectively. Neoagarotetraose and neoagarobiose were the main final products of agarose, indicating that it is β-agarase. Simiduia sp. SH-1 and its β-agarase would be useful for the industrial production of neoagarotetraose and neoagarobiose, which have a whitening effect on skin, delaying starch degradation, and inhibiting bacterial growth.

Qualitative and Quantitative Analysis for Microbiome Data Matching between Objects (마이크로바이옴 데이터 일치를 위한 물체들 사이의 정량 및 정성적 분석)

  • You, Hee Sang;Ok, Yeon Jeong;Lee, Song Hee;Lee, So Lip;Lee, Young Ju;Lee, Min Ho;Hyun, Sung Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.202-213
    • /
    • 2020
  • Although technological advances have allowed the efficient collection of large amounts of microbiome data for microbiological studies, proper analysis tools for such big data are still lacking. Additionally, analyses of microbial communities using poor databases can lead to misleading results. Hence, this study aimed to design an appropriate method for the analysis of big microbial databases. Bacteria were collected from the fingertips and personal belongings (mobile phones and laptop keyboards) of individuals. The genomic DNA was extracted from these bacteria and subjected to next-generation sequencing by targeting the 16S rRNA gene. The accuracy of the bacterial matching percentage between the fingertips and personal belongings was verified using a formula and an environment-related and human-related database. To design appropriate analysis, the bacterial matching accuracy was calculated based on the following three categories: comparison between qualitative and quantitative analysis, comparisons within same-gender participants as well as all participants regardless of gender, and comparison between the use of a human-related bacterial database (hDB) and environment-related bacterial database (eDB). The results showed that qualitative analysis, comparisons within same-gender participants, and the use of hDB provided relatively accurate results. This study provides an analytical method to obtain accurate results when conducting studies involving big microbiological data using human-derived microorganisms.

Isolation, Identification and Mutant Development of Butanol Tolerance Bacterium (부탄올 내성 미생물의 분리, 동정 및 변이주의 개발)

  • Jung, Hyesook;Lee, Jinho
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2013
  • Butanol-resistant bacteria were isolated from butanol solvent. The cell growth of isolated strains declined with increasing concentrations of butanol, and isolated strain BRS02 displayed more resistance to 12.5 g/L of butanol than other isolated strains. In addition, strain BRS251, which was resistant to even higher concentrations of butanol, was developed by the mutation of BRS02 using UV. BRS251 could grow in LB medium containing up to 17.5 g/L of butanol, 32.5 g/L of propanol, or 6 g/L of pentanol, whereas the control strain Escherichia coli was found to be tolerant to 7.5 g/L of butanol, 20 g/L of propanol, or 2 g/L of pentanol. The isolated BRS02, a Gram(+) bacterium seen to have a cocci form under the microscope, grew in 6.5% NaCl. According to biochemical tests, BRS02 can metabolize and produce acid with D-galactose, D-maltose, D-mannitol, D-mannose, methyl-${\beta}$-Dglucopyranoside, D-ribose, sucrose, or D-trehalose, as carbon sources. Also, this strain showed resistance to bacitracin, vibriostatic agent O/129, and optochin, alongside positive activities for arginine dihydrolase, ${\alpha}$-glucosidase, and urease. The BRS02 strain was identified as Staphylococcus sp. by analyses of the 16S rRNA gene, phylogenetic tree, and biochemical tests.

Enhanced Production of Endo-${\beta}$-1,4-xylanase from Paenibacillus sp. HX-1 Newly Isolated from Soil Samples at Hambak Mountain in Yongin city, Korea (용인 함박산 토양에서 분리한 Paenibacillus sp. HX-1의 동정과 endo-${\beta}$-1,4-xylanase 생산 증가를 위한 배지최적화)

  • Chi, Won-Ja;Kim, Jonghee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.263-271
    • /
    • 2013
  • A xylanase-producing bacterium was isolated from a soil sample collected in Yongin city, Korea. The strain was aerobic and gram positive, and grew between pH 5.0 and 11.0, forming a yellow-colored colony. The strain was classified as a novel subspecies bacterium of Paenibacillus barcinonensis by 16S rRNA gene sequence similarity, phylogenetic analysis, phenotypic, and biochemical characteristics, and thus named Paenibacillus sp. HX-1. This strain produced extracellular endo-${\beta}$-1,4-xylanase, and the best xylanolytic activity (205.17 unit/ml) was obtained at 96 h in an optimized TNX medium containing 1% (w/v) bacto tryptone, 1% (w/v) NaCl, and 0.7% (w/v) beechwood xylan at pH 7.0, $37^{\circ}C$ and 200 rpm. The endo-${\beta}$-1,4-xylanase produced by the strain HX-1 yielded xylobiose as the end product from beechwood xylan hydrolysis. The enzyme exhibited optimum pH and temperature at pH 7.0 and $45^{\circ}C$, respectively. The remarkable enhancing effect of the TNX medium on xylanase production by HX-1, in spite of its simple formula, may have great advantages for industrial applications of xylanase.

Comparative Analysis of Soil Microbial Communities between Conventional and Organic Farming Systems in Pepper Cultivation (관행과 유기농 고추 재배지의 토양미생물 군집 비교)

  • Kim, Yiseul;Lee, Youngmi;Weon, Hang-Yeon;Sang, Mee Kyung;Song, Jaekyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.235-250
    • /
    • 2020
  • Agricultural practices are known to have a crucial influence not only on soil physico-chemical properties but also on microbial communities. To investigate the effect of farming practices on soil microbial communities, a total of 10 soil samples were collected, including five conventional and five organic farming soils cultivated with peppers in plastic greenhouse. We conducted barcorded-pyrosequencing of V1-V3 regions of 16S rRNA genes to examine soil microbial communities of two different farming practices. Taxonomic classification of the microbial communities at the phylum level indicated that a total of 22 bacterial phyla were present across all samples. Among them, seven abundant phyla (>3%) including Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes were found, and Proteobacteria (33.0 ± 5.7%), Actinobacteria (19.9 ± 9.7%), and Firmicutes (13.6 ± 5.0%) comprised more than 66% of the relative abundance of the microbial communities. Organic farming soils showed higher relative abundances of Proteobacteria and Firmicutes, while Actinobacteria and Chloroflexi were more abundant in conventional farming soils. Notably, the genera Bacillus (higher in organic farming soils) and Streptomyces (higher in conventional farming soils) exhibited significant variation in relative abundance between organic and conventional farming soils. Finally, correlation analysis identified significant relationships (p<0.05) between soil chemical properties, in particular, pH and organic matter content and microbial communities. Taken together, this study demonstrated that the changes of soil physico-chemical properties by agricultural farming practices effected significantly (p<0.05) on soil microbial communities.

Bacterial Community of Natural Dye Wastewater Treatment Facility (천연염색 폐수처리시설의 세균 군집)

  • Hwang, Yeoung Min;Kim, Dae Kuk;Lee, Ji Hee;Baik, Keun Sik;Park, Chul;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.393-402
    • /
    • 2014
  • Culture-dependent and culture-independent denaturing gradient gel electrophoresis (DGGE) analyses were employed to investigate the bacterial community associated with a natural dye wastewater treatment facility. A total of 104 (influent water, 48 strains; aeration tank, 25; settling tank, 31) bacterial strains were isolated. Based on the 16S rRNA gene sequences comparison analysis, the isolates belonged to four phyla: Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes. Seventeen DGGE bands representing dominant taxa in each sample were cloned and partially sequenced. The same four phyla were detected by DGGE fingerprinting. The most dominant taxon retrieved by both methods was the member of the phylum Proteobacteria with Alphaproteobacteria as the predominant class. The bacterial community associated with the natural dye wastewater treatment facility is composed of parasites of animals and plants, decomposers of polysaccharides and dyes, and producers of extracellular polysaccharides.

Physiological Characterization of BTEX Degrading Bacteria Microbacterium sp. EMB-1 and Rhodococ-cus sp. EMB-2 Isolated from Reed Rhizosphere of Sunchon Bay (순천만 갈대의 근권으로부터 분리한 BTEX 분해세균 Microbacterium sp. EMB-1과 Rhodococcus sp. EMB-2의 생리학적 특성 분석)

  • Kang Sung-Mi;Oh Kye-Heon;Kahng Hyung-Yeel
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study focuses on investigating roles of microorganisms in decontamination of reed rhizosphere in Sunchon Bay, Korea, which is considered one of the marsh and mud environment severely affected by human activities such as agriculture and fisheries. In general, the bay is known to play the role of the buffering zone to reduce the sudden impact or change by environmental stresses. In our initial efforts to elucidate the microbial functions in decontamination process in reed rhizosphere, pure bacteria capable of degrading aromatic hydrocarbons were isolated from reed (Phragmites communis) rhizosphere of Sunchon bay by enrichment culture using either benzene, toluene, ethylbenzene, or xylene (BTEX) as a sole source of carbon and energy. Measurement of the rates of BTEX degradation and cell growth during the incubation in BTEX media under several temperature conditions demonstrated maximized degradation of BTEX at $37^{\circ}C$ in both strains. Both strains were also resistant to all the heavy metals and antibiotics tested in this study, as well as they grew well at $42^{\circ}C$. Identification of the isolates based on 16S rRNA gene sequences, and a variety of phenotypic and morphologic properties revealed that the two strains capable of BTEX catabolism were among Microbacterium sp., and Rhodococcus sp. with over $95{\%}$ confidence, designated Microbacterium sp. EMB-1 and Rhodococcus sp. EMB-2, respectively This result suggested that in the rhizosphere of reed, one of major salt marsh plants they might play an important roles in decontamination process of reed rhizosphere contaminated with petroleum such as BTEX.

Growth Promotion of Pavlova viridis by Bacteria Isolated from the Microalga (파블로바 비리디스로부터 분리한 세균에 의한 미세조류의 생장 촉진)

  • Ahamed, Sarker Anowarul Kabir;Kim, Jin-Joo;Choi, Tae-O;Choi, Tae-Jin
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.568-576
    • /
    • 2015
  • The marine microalga Pavlova viridis can grow fast and has the ability to accumulate essential nutrients for culturing marine animals, such as EPA and DHA, and it has been used as food for raring larval fish and prawn. The symbiotic relationship between the flagellate microalga Pavlova viridis and its associated bacteria was investigated. An axenic culture of P. viridis was obtained by repeated treatment of the microalga with an antibiotic cocktail. The axenic status was confirmed after sub-culturing three times in a sterile f/2 medium without an antibiotic. The axenic alga was then co-inoculated with five bacteria, arbitrarily designated as I1–I5, isolated from the alga to test the growth promotion of the algae. All bacterial strains promoted the growth of P. viridis, and bacterial isolate I3 was the most effective among the five bacteria tested. The cell number of P. viridis in the co-culture with I3 was significantly higher than that of the control culture. A sequence analysis of the 16S rRNA gene isolated from I3 revealed a 97% nucleotide sequence similarity to that of Citrobacter sp. The growth of strain I3 was also significantly enhanced by co-culturing with P. viridis, indicating a symbiotic relationship between the microalga and its associated bacterium. The association between the microalga and bacterium was confirmed by scanning electron microscopy.

Isolation of bacteriophage-resistant Pseudomonas tolaasii strains and their pathogenic characters (박테리오파지 저항성을 갖는 Pseudomonas tolaasii 변이주 분리 및 이들의 병원특성)

  • Park, Soo-Jin;Han, Ji-Hye;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.351-356
    • /
    • 2016
  • Bacterial blotch caused by Pseudomonas tolaasii is one of the major diseases of oyster mushroom, Pleurotus ostreatus. Application of bacteriophages is a very useful tool to decrease the density of pathogens and it has been successful to making disease-free cultivation area, known as phage therapy. Effect of phages on pathogen sterilization is very limited to the specific host strains. Minor variations of the host strains may cause changes in phage sensitivity. The phage-resistant strains of P. tolaasii were isolated and their pathogenic characters were investigated to improve the effectiveness of phage therapy. In the phylogenetic analysis, both phage-resistant strains and the corresponding host strains were identical based on the sequence comparison of 16S rRNA genes. The pathogenic characters, such as hemolytic activity and brown blotch formation, were measured on the phage-resistant strains and no correlation between phage-resistance and pathogenic characters was observed. Nevertheless, pathogenic characters were sometimes changed in the phage-resistant strains depending on the host strains. In order to make the phage therapy successful, the bacteriophages having a wide host range should be isolated.

Isolation and Characterization of Marine Bacterial Strain SH-1 Producing Agar-Degrading Enzymes (한천 분해효소를 생산하는 해양 미생물 SH-1의 분리 및 특성 분석)

  • Lee, Jae-Hag;Lee, Soon-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.324-330
    • /
    • 2014
  • A marine bacterial strain producing agar-degrading enzymes was isolated from a mud flat in Jeboo-do (Korea) using a selective artificial sea water (ASW) agar plate containing agar as the sole carbon source. The isolate, designated as SH-1, was gram-negative, aerobic, and motile with single polar flagellum. 16S rRNA gene sequence similarity analysis showed the isolate SH-1 had the highest homology (96.5%) to marine bacterium Neiella marina J221. Cells could grow at $28-37^{\circ}C$ but not at $42^{\circ}C$, and the agarase activity of the cell culture supernatant was higher when grown at $28^{\circ}C$ than when grown at $37^{\circ}C$. Cells could grow when concentrations of 1-5% (w/v) NaCl were added to the growth media with the best growth observed at 3% NaCl, and the agardegrading enzyme activity of the cell culture supernatant was best when grown at 3% NaCl-containing growth media under the conditions we examined. The crude enzyme prepared from 48-h culture broth of strain SH-1 exhibited an optimum pH and temperature for agar-degrading activity at 7.0 and $40^{\circ}C$, respectively. Zymogram analysis of the crude supernatant and cell extract showed that strain SH-1 produced at least 3 agar-degrading enzymes with molecular weights of 15, 35, and 52 KD. Thinlayer chromatography (TLC) analysis also suggested that HS-1 produces ${\beta}$-agarase to degrade agarose to neoagarooligosaccharides.