• Title/Summary/Keyword: 16S-rRNA

Search Result 1,903, Processing Time 0.028 seconds

The Analysis of Mitochondrial DNA in the Patients with Essential Tremor and Parkinson's Disease (본태성 수전증과 파킨슨병 환자에서 미토콘드리아 DNA 비교 분석)

  • Kim, Rae Sang;Yoo, Chan Jong;Lee, Sang-Gu;Kim, Woo-Kyung;Han, Ki-Soo;Kim, Young-Bo;Park, Cheol-Wan;Lee, Uhn
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.11
    • /
    • pp.1415-1420
    • /
    • 2000
  • Essential tremor(ET) is the most common movement disorder however there has been little agreement in the neurologic literature regarding diagnostic criteria for ET. Familial ET is an autosomal dominant disorder presenting as an isolated postural tremor. The main feature of ET is postural tremor of the arms with later involvement of the head, voice, or legs. In previous studies, it was reported that ET susceptibility was inherited in an autosomal dominant inheritance. As with previous results, it would suggest that ET might be associated with defect of mitochondrial or nuclear DNA. Recent studies are focusing molecular genetic detection of movement disorders, such as essential tremor and restless legs syndrome. Parkinson's disease(PD) is a neurodegenerative disease involving mainly the loss of dopaminergic neurons in substantia nigra by several factors. The cause of dopaminergic cell death is unknown. Recently, it has been suggested that Parkinson's disease many result from mitochondrial dysfunction. The authors have analysed mitochondrial DNA(mtDNA) from the blood cell of PD and ET patients via long and accurate polymerase chain reaction(LA PCR). Blood samples were collected from 9 PD and 9 ET patients. Total DNA was extracted twice with phenol followed by chloroform : isoamylalcohol. For the analysis of mtDNA, LA PCR was performed by mitochondrial specific primers. With LA PCR, 1/3 16s rRNA~1/3 ATPase 6/8 and COI~3/4 ND5 regions were observed in different patterns. But, in the COI~1/3 ATPase 6/8 region, the data of PCR were observed in same pattern. This study supports the data that ET and PD are genentic disorders with deficiency of mitochondrial DNA multicomplexes.

  • PDF

Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens

  • Park, Jong Myong;You, Young-Hyun;Park, Jong-Han;Kim, Hyeong-Hwan;Ghim, Sa-Youl;Back, Chang-Gi
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.160-171
    • /
    • 2017
  • Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.

Sinomonas terrae sp. nov., Isolated from an Agricultural Soil

  • Hyosun Lee;Ji Yeon Han;Dong-Uk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.909-914
    • /
    • 2023
  • While searching for the bacteria which are responsible for degradation of pesticide in soybean field soil, a novel bacterial strain, designated 5-5T, was isolated. The cells of the strain were Gram-staining-positive, aerobic and non-motile rods. Growth occurred at 10-42℃ (optimum, 30℃), pH 5.5-9.0 (optimum, pH 7.0-7.5), and 0-2% (w/v) NaCl (optimum, 1%). The predominant fatty acids were C15:0 anteiso, C17:0 anteiso, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The predominant menaquinone was MK-9 (H2). Diphosphatidylglycerol, glycolipids, phosphatidylinositol, and phosphatidylglycerol were the major polar lipids. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain 5-5T is a member of the genus Sinomonas and its closest relative is Sinomonas humi MUSC 117T, sharing a genetic similarity of 98.4%. The draft genome of strain 5-5T was 4,727,205 bp long with an N50 contig of 4,464,284 bp. Genomic DNA G+C content of strain 5-5T was68.0 mol%. The average nucleotide identity (ANI) values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 87.0, and 84.3 % respectively. In silico DNA-DNA hybridization values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 32.5% and 27.9% respectively. Based on the ANI and in silico DNA-DNA hybridization analyses, the 5-5T strain was considered as novel species belonging to the genus Sinomonas. On the basis of the results from phenotypic, genotypic and chemotaxonomic analyses, strain 5-5T represents a novel speciesof the genus Sinomonas, for which the name Sinomonas terrae sp. nov. is proposed. The type strain is 5-5T (=KCTC 49650T =NBRC 115790T).

Effects of Season Differences on the Cecal Microbiome of Broiler at Conventional Farms and Welfare System Farms (계절에 따른 일반 농가와 복지 농가 육계의 맹장 내 미생물 균총에 미치는 영향)

  • Junsik Kim;Seol Hwa Park;Minji Kim;Seong Hoon Shim;Hwan Ku Kang;Jin Young Jeong
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2024
  • The gut microbiome of broilers is a critical factor in overall health and productivity. However, high summer temperatures and high stocking density (conventional farm condition) may cause stress to broilers, resulting in an imbalance in the gut microbiome. This study was conducted to compare the gut microbiome of broilers between spring and summer in welfare (Bosung, Jeollanam-do, South Korea) and conventional farms (Jangsu, Jeollabuk-do, South Korea). A total of 31 broilers were assigned to the following groups: conventional farm in spring (n = 8); conventional farm in summer (n = 8); welfare farm in spring (n = 7); welfare farm in summer (n = 8). Cecal digesta were collected from eight broilers from each farm, and microbiome analysis was performed using 16S rRNA gene sequencing. Beta diversity analysis indicated clear differences in cecal microbiome composition between spring and summerin both welfare and conventional farm. At the phylum level, analysis of conventional farm revealed a higher proportion of Bacteroidetes in spring than in summer. At the genus level, broilers exhibited a higher abundance of Bacteroides and Alistipesin spring compared to summer. In contrast, the difference in microbial flora composition observed in welfare farm was relatively small compared to conventional farm. In conclusion, the results of this study suggest that heat stress can negatively affect the caecum microbiome of broilers. However, improvements in the housing environment can mitigate the effects of heat stress.

Effect of Extracts and Bacteria from Korean Fermented Foods on the Control of Sesame Seed-Borne Fungal Diseases (발효식품 추출물과 미생물을 활용한 참깨 종자전염성 병 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Park, Jong-Won;Park, So-Hyang;Jee, Hyeong-Jin;Kim, Seok-Cheol
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.297-308
    • /
    • 2015
  • In order to control seed-borne diseases, we obtained extracts from commercial fermented food products of Kimchi, Gochujang, Doenjang, Ganjang and Makgeolli and their suppressive effects against seed-borne diseases were studied. In addition, the suppressive effects of bacterial strains isolated from the fermented foods were screened in vitro and in vivo. Among fifty food extracts, twenty food-extracts suppressed more than 92% incidence of seedling rots in vitro and seven food extracts increased 58.3-66.8% of healthy seedling in the greenhouse. Among 218 isolates from the fermented foods, 29 isolates showing high antifungal activity against seven seed-borne fungal pathogens were selected. Among 29 isolates, 13 isolates significantly reduced seedling rot and increased healthy seedlings. Sixteen isolates with high antifungal activity and suppressive effect against sesame seedling rots were identified by 16S rRNA sequencing. Fourteen of sixteen isolates were identified as Bacillus spp. and the other two isolates from Makgeolli were identified as Saccharomyces cerevisiae. It was confirmed that B. amyloliquifaciens was majority in the effective bacterial population of Korean fermented foods. In addition, when the bioformulations of the two selected effective microorganisms, B. amyloliquifacien Gcj2-1 and B. amyloliquifacien Gcj3-1, were prepared in powder forms using bentonite, kaolin, talc and zeolite, talc- and kaolin-bioformulation showed high control efficacy against sesame seed-borne disease, followed by zeolite-bioformulation. Meanwhile control efficacy of each bentonite-bioformulation of B. amyloliquifacien Gcj2-1 and B. amyloliquifacien Gcj3-1 was lower than that of bacterial suspension of them. It was found that the selected effective microorganisms from Korean fermented foods were effective for controlling seed-borne diseases of sesame in vitro and in the greenhouse. We think that Korean fermented food extracts and useful microorganisms isolated from the extract can be used as bio-control agents for suppressing sesame seed-borne diseases based on above described results.

The effect of antagonists produced by Paenibacillus polymyxa CK-1 on the growth of Trichoderma sp. (Paenibacillus polymyxa CK-1이 생산한 길항물질이 Trichoderma sp. 생육에 미치는 영향)

  • Lee, Sang-Won;Choi, Jin-Sang;Kim, Chul-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • The separation of the bacteria inhibiting Trichoderma sp. mold, the strain causing blue mold disease that occurs frequently when cultivating mushroom while carrying out the efficient fermentation of mushroom medium, from the growth was done. In about 200 strains isolated primarily from fungus garden samples, 6 strains were secondly isolated, which had fast growth rates and a clear zone on the plate medium of SM, AM, and CM. Among the 6 strains isolated, the C-1 strain showed high enzymatic activity of cellulase, amylase, and protease, and strong antibacterial activity for the T. virens and T. harzianum, selected finally. The selected C-1 strain was identified as Paenibacillus polymyxaby the result of the identification by Bergey's Manual of Systematic Bacteriology and the analysis of the nucleotide sequence of 16S rRNA, and named as P. polymyxa CK-1. In reviewing the growth conditions of the P. polymyxa CK-1 strain, the optimum cultivation temperature was $45^{\circ}C$, and the optimum pH for growth was in the range of 6.0~7.0. Appropriate incubation time of P. polymyxa CK-1 for the growth inhibition of the fungus T. virens and T. harzianum was 22 to 36 hours. And the fungal growth was not observed, even when leaving two molds inoculated on each petri dishes, which were treated with 24 hour culture solution of P. polymyxa CK-1 strain for 10 days. As a result of studying the thermal stability of the antagonists produced by the P. polymyxa CK-1 strain, no mycelial growth of the two fungi was observed in the test group treated for 20 minutes at $60^{\circ}C$ and $100^{\circ}C$, but mycelial growth was slightly observed in the test group treated for 20 minutes at $121^{\circ}C$. As aresult of reviewing the impact of the P. polymyxa CK-1 culture medium on mushroom mycelial growth, it showed no effect on a variety of mushroom mycelial growth including enoki mushroom and shiitake mushroom.

Deacidification Effect of Campbell Early Must through Carbonic-Maceration Treatment: Isolation and Properties of the Bacteria Associated with Deacidification (Carbonic Maceration처리에 의한 Campbell Early 발효액의 감산 효과: 감산 관련 미생물의 분리 및 특성)

  • Chang, Eun-Ha;Jeong, Seok-Tae;Jeong, Sung-Min;Lim, Byung-Sun;Noh, Jung-Ho;Park, Kyo-Sun;Park, Seo-Jun;Choi, Jong-Uck
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.973-979
    • /
    • 2011
  • The grape cultivar Campbell Early has high levels of malic acid as well as tartaric acid. The high concentration of total acid in the Campbell Early wine is a critical aspect of the wine's sensory characteristics. To prevent the deterioration of the wine's quality, which is caused by the strong sour taste derived from the raw material in wine making, the deacidification factor was investigated via carbonic maceration under different temperature conditions, especially in the presence or absence of malolactic bacteria. Based on the results of the presence test of the malolactic bacteria during carbonic-maceration treatment, Lactobacillus brevis, Lactobacillus plantarum, and Streptococcus thermophilus were characterized morphologically and were identified via biochemical tests and 16S-rRNA-gene-sequencing analysis. The isolated strains were found not to consume malic acid and to produce lactic acid. Moreover, these strains were consumed as soluble solids. The isolated strains are popularly known as lactic-acid bacteria and should have produced lactic acid from glucose. The Oenococcus oeni of the malolactic bacteria was not isolated. These results showed that the isolated strains are not deacidified during carbonic-maceration treatment.

The Fermentative Hydrogen Production in Trickling Bed Biofilter Filled with Hydrophilic-and Hydrophobic-Media (소수성 및 친수성 담체를 이용한 Trickling Bed Biofilter의 생물학적 수소생산)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Gu, Man-Bock;Chae, Hee-Jeong;Sang, Byoung-In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.379-388
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and conducted for hydrogen production under the anaerobic fermentation of sucrose. Each bioreactor consisted of the column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed by the different hydraulic retention time(HRT), and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% of biogas throughout the operation. Hydrogen production rate was increased till $10.5\;L{\cdot}h^{-1}{\cdot}L^{-1}$ of bioreactor when influent sucrose concentrations and recycle rates were varied. At the same time, the hydrogen production rate with hydrophobic media application was higher than its hydrophilic media application. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate, butyrate and lactate. In order to run in the long term operation of both reactor filled with hydrophilic and hydrophobic media, biofilm accumulation on hydrophilic media and biogas produced should be controlled through some process such as periodical backwashing or gas-purging. Four sample were collected from each reactor on the opposite hydrogen production rate, and their bacterial communities were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR products generated using bacterial 16s rRNA gene primers (8f and 926r). It was expressed a marked difference in bacterial communities of both reactors. The trickling bed bioreactor with hydrophobic media demonstrates the feasibility of the process to produce hydrogen gas. A likely application of this reactor technology can be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

Antifouling Activity towards Mussel by Small-Molecule Compounds from a Strain of Vibrio alginolyticus Bacterium Associated with Sea Anemone Haliplanella sp.

  • Wang, Xiang;Huang, Yanqiu;Sheng, Yanqing;Su, Pei;Qiu, Yan;Ke, Caihuan;Feng, Danqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.460-470
    • /
    • 2017
  • Mussels are major fouling organisms causing serious technical and economic problems. In this study, antifouling activity towards mussel was found in three compounds isolated from a marine bacterium associated with the sea anemone Haliplanella sp. This bacterial strain, called PE2, was identified as Vibrio alginolyticus using morphology, biochemical tests, and phylogenetic analysis based on sequences of 16S rRNA and four housekeeping genes (rpoD, gyrB, rctB, and toxR). Three small-molecule compounds (indole, 3-formylindole, and cyclo (Pro-Leu)) were purified from the ethyl acetate extract of V. alginolyticus PE2 using column chromatography techniques. They all significantly inhibited byssal thread production of the green mussel Perna viridis, with $EC_{50}$ values of $24.45{\mu}g/ml$ for indole, $50.07{\mu}g/ml$ for 3-formylindole, and $49.24{\mu}g/ml$ for cyclo (Pro-Leu). Previous research on the antifouling activity of metabolites from marine bacteria towards mussels is scarce. Indole, 3-formylindole and cyclo (Pro-Leu) also exhibited antifouling activity against settlement of the barnacle Balanus albicostatus ($EC_{50}$ values of 8.84, 0.43, and $11.35{\mu}g/ml$, respectively) and the marine bacterium Pseudomonas sp. ($EC_{50}$ values of 42.68, 69.68, and $39.05{\mu}g/ml$, respectively). These results suggested that the three compounds are potentially useful for environmentally friendly mussel control and/or the development of new antifouling additives that are effective against several biofoulers.

Enzyme Production of A Protease-producing Strain, Bacillus sp SH-8 Isolated from Insect-eating Plant (식충식물로부터 Protease를 생산하는 Bacillus sp. SH-8의 분리와 효소 생산성)

  • Yoon, Ki-Hong;Lee, Mi-Sung;Park, Bueng-Wan;Park, Yong-Ha;Kim, Hong-Ik;Kim, Jeong-Hyeon;Kim, Moon-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.323-328
    • /
    • 2006
  • A bacterium producing the extracellular protease was isolated from insect-eating plant and has been identified as a member of the genus Bacillus based on partial 165 rRNA sequences. In order to develop the medium composition, effects of ingredients including nitrogen sources, carbon source, metal ions and phosphate were examined for protease production of the isolate, SH-8. Soluble starch increased the protease productivity, while glucose repressed it. Yeast extract was effective nitrogen source for enzyme production, but the pretense production of Bacillus sp. SH-8 was reduced by large amount of yeast extract. The calcium was found to induce pretense activity as well as protease productivity. However, cell growth and enzyme production was completely inhibited by divalent ions such as $Zn^{2+}$, $Cu^{2+}$, $Co^{2+}$ and $Mn^{2+}$. The maximum protease productivity was reached 435 unit/ml in the optimized medium consisting of soluble starch (2%), yeast extract (0.3%), $CaCl_2$ (0.3%), $K_2HPO_4$ (0.01%) and $KH_2PO_4$ (0.01%). The pretense activity of culture filtrate was dramatically decreased after incubation for 26 h.