• Title/Summary/Keyword: 16S-23S rRNA intergenic spacer region

Search Result 22, Processing Time 0.018 seconds

A Comparison of Genospecies of Clinical Isolates in the Acinetobacter spp. Complex Obtained from Hospitalized Patients in Busan, Korea

  • Park, Gyu-Nam;Kang, Hye-Sook;Kim, Hye-Ran;Jung, Bo-Kyung;Kim, Do-Hee;Chang, Kyung-Soo
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.40-53
    • /
    • 2019
  • Of the Acinetobacter spp., A. baumannii (genospecies 2) is the most clinically significant in terms of hospital-acquired infections worldwide. It is difficult to perform Acinetobacter-related taxonomy using phenotypic characteristics and routine laboratory methods owing to clusters of closely related species. The ability to accurately identify Acinetobacter spp. is clinically important because antimicrobial susceptibility and clinical relevance differs significantly among the different genospecies. Based on the medical importance of pathogenic Acinetobacter spp., the distribution and characterization of Acinetobacter spp. isolates from 123 clinical samples was determined in the current study using four typically applied bacterial identification methods; partial rpoB gene sequencing, amplified rRNA gene restriction analysis (ARDRA) of the intergenic transcribed spacer (ITS) region of the 16~23S rRNA, the $VITEK^{(R)}$ 2 system (an automated microbial identification system) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). A. baumannii isolates (74.8%, 92/123) were the most common species, A. nosocomialis (10.6%, 13/123) and A. pittii isolates (7.5%, 9/123) were second and third most common strains of the A. calcoaceticus-A. baumannii (ACB) complex, respectively. A. soli (5.0%, 6/123) was the most common species of the non-ACB complex. RpoB gene sequencing and ARDRA of the ITS region were demonstrated to lead to more accurate species identification than the other methods of analysis used in this study. These results suggest that the use of rpoB genotyping and ARDRA of the ITS region is useful for the species-level identification of Acinetobacter isolates.

Inhibitory Effects of a Korean Strain Gpf01 Identified as Pseudomonas fluorescens on Cucumber mosaic virus

  • Ipper, Nagesh S.;Kim, Jung-Eun;Koo, Jun-Hak;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.262-269
    • /
    • 2005
  • An antiviral producing bacterial strain was isolated from a ginseng rhizosphere in Kangwon province of Republic of Korea. In order to identify the bacterial strain, microbiological, physiological and biochemical tests were performed, along with RAPD, 16S rRNA, 16S-23S rRNA ITS (intergenic spacer region) and DNA-DNA hybridization analyses. The bacterium was found to be a strain of Pseudomonas fluorescens, which was designated as Gpf01. The strain was grown in Muller-Hinton (MH) broth, and the culture supernatant obtained was filtered through a $0.45{\mu}l$ filter. It was further boiled at $100^{\circ}C$ and tested in two experiments for its ability to control a yellow strain of Cucumber mosaic virus (CMV-Y). In the first experiment, boiled culture filtrate (RCF) was treated on one half of the leaves of Chenopodium amaranticolor followed by CMV- Y inoculation on both halves. In the second experiment, BCF was treated on the lower leaves of Nicotiana tobacum var. Xanthi-nc, with the CMV-Y mechanically inoculated onto the upper untreated leaves. In the first experiment, BCF treatment was able to considerably reduce the number of viral lesion, and in the second experiment, plants treated with BCF showed no visible viral symptoms compared to the Muller-Hinton (MH) media treated controls 15 days post inoculation (dpi), and remained symptomless throughout the study period. Thus, Gpf01, identified as P. fluorescence, was able to produce an antiviral component in the culture filtrate, which was found to be heat stable, non-phytotoxic and effective in local as well as systemic hosts of CMV.