• Title/Summary/Keyword: 16S rRNA Pyrosequencing

Search Result 60, Processing Time 0.026 seconds

Analysis of Bacterial Community Composition in Wastewater Treatment Bioreactors Using 16S rRNA Gene-Based Pyrosequencing (16S rRNA 유전자 기반의 Pyrosequencing을 이용한 하수처리시설 생물반응기의 세균군집구조 분석)

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • Bacterial community composition in activated sludge wastewater treatment bioreactors were analyzed using 16S rRNA gene-based pyrosequencing for the four different wastewater treatment processes. Sequences within the orders Rhodocyclales, Burkholderiales, Sphingobacteriales, Myxococcales, Xanthomonadales, Acidobacteria group 4, Anaerolineales, Methylococcales, Nitrospirales, and Planctomycetales constituted 54-68% of total sequences retrieved in the activated sludge samples, which demonstrated that a few taxa constituted majority of the activated sludge bacterial community. The relative ratio of the order members was different for each treatment process, which was assumed to be affected by different operational and environmental conditions of each treatment process. In addition, activated sludge had very diverse bacterial species (Chao1 richness estimate: 1,374-2,902 operational taxonomic units), and the diversity was mainly originated from rare species. Particularly, the bacterial diversity was higher in membrane bioreactor than conventional treatment processes, and the long solids retention time of the operational strategy of the membrane bioreactor appeared to be appropriate for sustaining diverse slow growing bacteria. This study investigating bacterial communities in different activated sludge processes using a high-throughput pyrosequencing technology would be helpful for understanding microbial ecology in activated sludge and for improving wastewater treatment in the future.

Analysis of Archaeal Communities in Full-Scale Anaerobic Digesters Using 454 Pyrosequencing (454 Pyrosequencing을 이용한 실규모 혐기성 소화조의 아케아 군집구조 분석)

  • Kang, Hyun-Jin;Kim, Taek-Seung;Lee, Young-Haeng;Lee, Taek-June;Han, Keum-Suk;Choi, Young-Jun;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2011
  • Archaeal communities were investigated using 454 pyrosequencing technology based on 16S rRNA gene in 11 samples collected from six different full-scale anaerobic digesters. Observed operational taxonomic units (OTUs) estimated from the archaeal 16S rRNA gene sequences were 13-55 OTUs (3% cutoff) which was corresponded to 29-89% of Chao1 richness estimates. In the anaerobic digesters there were archaeal sequences within the orders Thermoproteales, Thermoplasmatales, Desulfurococcales as well as within the orders Methanomicrobiales, Methanobacteriales, Methanococcales, Methanosarcinales, and Methanocellales, which are known to produce methane. Among these orders, Methanococcales known to produce methane using hydrogen was the predominant taxon and constituted 51.8-99.7% of total sequences. All samples showed a very similar community structure (Pearson correlation coefficient=0.99) except for one sample based on a heat map analysis. In addition, canonical correspondence analysis correlating archaeal communities to the environmental variables demonstrated that digester temperature and total solids removal rate were the two important explanatory variables. Overall results suggested that environmental and operational variables of anaerobic digester are important factors determining archaeal diversity and community structure.

Bacterial Diversity in the Guts of Sea Cucumbers (Apostichopus japonicus) and Shrimps (Litopenaeus vannamei) Investigated with Tag-Encoded 454 Pyrosequencing of 16S rRNA Genes (16S rRNA 유전자의 454 파이로서열 분석을 이용한 해삼(Apostichopus japonicas)과 새우(Litopenaeus vannamei)의 장내 세균의 다양성 연구)

  • Noh, Eun Soo;Kim, Young-Sam;Kim, Dong-Hyun;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.237-244
    • /
    • 2013
  • Bacterial diversities in the guts of sea cucumbers (Apostichopus japonicus) and shrimps (Litopenaeus vannamei) were investigated using barcoded or tag-encoded 454 pyrosequencing of 16S rRNA genes. In sea cucumbers, most of sequences were related to two genera, the genus Propionigenium in the phylum Fusobacteria and an unclassified genus in the family Flavobacteriaceae of phylum Bacteroidetes. Shrimps showed various kinds of genera including Lactococcus, Leuconostoc, Prochlorococcus, and Vibrio as well as the unclassified genera in the families, Flavobacteriaceae, Rhodobacteraceae, Desulfobulbaceae, and Helicobacteraceae and in the order Mycoplasmatales. Unclassified genera containing environmental sequences only are more than half of genera from sea cucumbers and shrimps. Sea cucumbers and shrimps could be unexplored sources of novel microbes and the bacterial diversity of them was revealed by high throughput 454 pyrosequencing.

Seasonal Changes in Cyanobacterial Diversity of a Temperate Freshwater Paldang Reservoir (Korea) Explored by using Pyrosequencing

  • Boopathi, Thangavelu;Wang, Hui;Lee, Man-Duck;Ki, Jang-Seu
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.424-437
    • /
    • 2018
  • The incidence of freshwater algal bloom has been increasing globally in recent years and poses a major threat to environmental health. Cyanobacteria are the major component of the bloom forming community that must be monitored frequently. Their morphological identities, however, have remained elusive, due to their small size in cells and morphological resemblances among species. We have analyzed molecular diversity and seasonal changes of cyanobacteria in Paldang Reservoir, Korea, using morphological and 16S rRNA pyrosequencing methods. Samples were collected at monthly intervals from the reservoir March-December 2012. In total, 40 phylotypes of cyanobacteria were identified after comparing 49,131 pyrosequence reads. Cyanobacterial genera such as Anabaena, Aphanizomenon, Microcystis and Synechocystis were predominantly present in samples. However, the majority of cyanobacterial sequences (65.9%) identified in this study were of uncultured origins, not detected morphologically. Relative abundance of cyanobacterial sequences was observed as high in August, with no occurrence in March and December. These results suggested that pyrosequencing approach may reveal cyanobacterial diversity undetected morphologically, and may be used as reference for studying and monitoring cyanobacterial communities in aquatic environments.

Comparison of Bacterial Diversity in the Water Columns of Goseong Deep Seawaters (고성 심해에서 수심에 따른 해양미생물의 다양성 비교)

  • Khang, Yongho
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.282-285
    • /
    • 2013
  • Microbial diversities in the 300 m and 500 m deep seawaters near Goseong, Gangwon Province (South Korea), were investigated. Pyrosequencing of 16S rRNA genes of marine microbes resulted in 19,474 reads from the 300 m deep seawaters, which consisted of Alphaproteobacteria (57.41%) and Gammaproteobacteria (38.85%), and 82,806 reads from the 500 m deep seawaters, which consisted of Gammaproteobacteria (99.64%) mostly. Rhodobacterales (57.31%) were dominant in the 300 m deep seawaters, but Alteromonadales (45.65%) and Oceanospirillales (34.61%) were dominant in the 500 m deep seawaters. On the bases of operational taxonomic units and diversity indexes (Shannon and Simpson), biodiversity of marine bacteria in the 500 m deep seawaters was shown to be higher than that in the 300 m deep seawaters.

Fecal microbiota analysis of obese dogs with underlying diseases: a pilot study

  • Park, Hyung Jin;Lee, Sang Eun;Kim, Hyeun Bum;Kim, Jae Hoon;Seo, Kyoung Won;Song, Kun Ho
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.205-208
    • /
    • 2015
  • Ten dogs were enrolled in this study: two healthy dogs, two obese dogs without other medical issues and six obese dogs with underlying diseases including pemphigus, chronic active hepatitis, hyperadrenocorticism, narcolepsy, otitis media and heartworm infection. Pyrosequencing of the 16S rRNA gene to explore the gut bacterial diversity revealed that distal gut bacterial communities of samples from patients with pemphigus, otitis media and narcolepsy consisted primarily of Firmicutes, while the major phylum of the distal gut bacterial communities in patients with chronic active hepatitis and hyperadrenocorticism was Fusobacteria. Proteobacteria were the dominant phylum in heartworm infected obese patients.

Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis

  • Wang, Jin;Fan, Huan;Han, Ye;Zhao, Jinzhao;Zhou, Zhijiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.100-110
    • /
    • 2017
  • Objective: The gastrointestinal tract of sheep contain complex microbial communities that influence numerous aspects of the sheep's health and development. The objective of this study was to analyze the composition and diversity of the microbiota in the gastrointestinal tract sections (rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, and rectum) of sheep. Methods: This analysis was performed by 454 pyrosequencing using the V3-V6 region of the 16S rRNA genes. Samples were collected from five healthy, small tailed Han sheep aged 10 months, obtained at market. The bacterial composition of sheep gastrointestinal microbiota was investigated at the phylum, class, order, family, genus, and species levels. Results: The dominant bacterial phyla in the entire gastrointestinal sections were Firmicutes, Bacteroidetes, and Proteobacteria. In the stomach, the three most dominant genera in the sheep were Prevotella, unclassified Lachnospiraceae, and Butyrivibrio. In the small intestine, the three most dominant genera in the sheep were Escherichia, unclassified Lachnospiraceae, and Ruminococcus. In the large intestine, the three most dominant genera in the sheep were Ruminococcus, unclassified Ruminococcaceae, and Prevotella. R. flavefaciens, B. fibrisolvens, and S. ruminantium were three most dominant species in the sheep gastrointestinal tract. Principal Coordinates Analysis showed that the microbial communities from each gastrointestinal section could be separated into three groups according to similarity of community composition: stomach (rumen, reticulum, omasum, and abomasum), small intestine (duodenum, jejunum, and ileum), and large intestine (cecum, colon, and rectum). Conclusion: This is the first study to characterize the entire gastrointestinal microbiota in sheep by use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the gastrointestinal bacterial community of sheep.

Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

  • Pajarillo, Edward Alain B.;Chae, Jong Pyo;Balolong, Marilen P.;Kim, Hyeun Bum;Seo, Kang-Seok;Kang, Dae-Kyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.584-591
    • /
    • 2015
  • This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level). Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

Phylogenetic characteristics of bacterial populations and isolation of aromatic compounds utilizing bacteria from humus layer of oak forest (상수리림 부식층으로부터 방향족 화합물 분해세균의 분리 및 세균군집의 계통학적 특성)

  • Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.175-182
    • /
    • 2016
  • In this study, we isolated aromatic compounds (lignin polymers) utilizing bacteria in humus layer of oak forest and investigated phylogenetic characteristics and correlation with major bacterial populations in the humus layer by pyrosequencing. Forty-two isolates using aromatic compounds such as p-anisic acid, benzoic acid, ferulic acid and p-coumaric acid were isolated and phylogentic analyses based on 16S rRNA gene sequences showed that the isolates belonged to the genus Rhizobium, Sphingomonas, Burkhorlderia, and Pseudomonas. Among these, Burkhorlderia species which belong to Betaproteobacteria class occupied 83% among the isolates. The bacterial populations in humus layer of oak forest were characterized by next generation pyrosequencing based on 16S rRNA gene sequences. The humus sample produced 7,862 reads, 1,821 OTUs and 6.76 variability index with 97% of significance level, respectively. Bacterial populations consist of 22 phyla and Betaproteobacteria were the major phylum consisting of 15 genera including Burkholderia, Polaromonas, Ralstoria, Zoogloea, and Variovorax. Approximately fifty percentage of them was Burkholderia. Burkholderia as the majority of population in the humus was considered to play a role in degrading lignin in humus layer of oak forest.

Microbial profile of asymptomatic and symptomatic teeth with primary endodontic infections by pyrosequencing (원발성 치근단 치주염을 갖는 감염근관에서 증상유무에 따른 세균분포의 pyrosequencing 분석)

  • Lim, Sang-Min;Lee, Tae-Kwon;Kim, Eun-Jeong;Park, Jun-Hong;Lee, Yoon;Bae, Kwang-Shik;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.6
    • /
    • pp.498-505
    • /
    • 2011
  • Objectives: The purpose of this in vivo study was to investigate the microbial diversity in symptomatic and asymptomatic canals with primary endodontic infections by using GS FLX Titanium pyrosequencing. Materials and Methods: Sequencing was performed on 6 teeth (symptomatic, n = 3; asymptomatic, n = 3) with primary endodontic infections. Amplicons from hypervariable region of the small-subunit ribosomal RNA gene were generated by polymerized chain reaction (PCR), and sequenced by means of the GS FLX Titanium pyrosequencing. Results: On average, 10,639 and 45,455 16S rRNA sequences for asymptomatic and symptomatic teeth were obtained, respectively. Based on Ribosomal Database Project Classifier analysis, pyrosequencing identified the 141 bacterial genera in 13 phyla. The vast majority of sequences belonged to one of the seven phyla: Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, Spirochetes, and Synergistetes. In genus level, Pyramidobacter, Streptococcus, and Leptotrichia constituted about 50% of microbial profile in asymptomatic teeth, whereas Neisseria, Propionibacterium, and Tessaracoccus were frequently found in symptomatic teeth (69%). Grouping the sequences in operational taxonomic units (3%) yielded 450 and 1,997 species level phylotypes in asymptomatic and symptomatic teeth, respectively. The total bacteria counts were significantly higher in symptomatic teeth than that of asymptomatic teeth (p < 0.05). Conclusions: GS FLX Titanium pyrosequencing could reveal a previously unidentified high bacterial diversity in primary endodontic infections.