• Title/Summary/Keyword: 165 MHz amplifier

Search Result 4, Processing Time 0.021 seconds

Implementation of An Water-Cooled High Power Amplifier for Particle Accelerator (입자 가속기용 수냉식 고전력 증폭기 구현)

  • Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • This paper describes implementation of a 165 MHz, 5 kW RF high power amplifier (HPA) for particle accelerator applications. The HPA consists of a drive amplifier for main amplifiers driving, sixteen 600 W class-AB push-pull power amplifier pallets and Wilkinson power divider/combiner using lumped LC components, which are divided/combined power amplifier pallet outputs. To detected the amplifier circuit of normal and reflected output power conditions, we used a bidirectional coupler. To radiate heat of main power amplifier, we were used an water-cooled copper plates to go through a water for radiation of heat. The HPA of center frequency 165 MHz has archived an efficiency of 62.5 % at 5 kW of power level experimentally.

A Design of Ultra Wide-Band Feedforward Amplifier Using Equal Group-Delayed Signal Canceller (동일 군속도 지연 신호 상쇄기를 이용한 광대역 Feedforward증폭기 설계)

  • Jeong Yong-Chae;Ahn Dal;Kim Hong-Gi;Kim Chul-Dong;Chang Ik-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.825-834
    • /
    • 2005
  • In this paper, a new signal canceller that input signals are equally group-delayed and cancelled each other is proposed and feedforward linearizing power amplifier that adopt the proposed signal cancellers is fabricated. Although the conventional signal canceller can't matches the phase and the group delay time of input signals simultaneously, the proposed signal canceller matches those simultaneously. Simultaneous matching of the phase and the group delay time can makes wideband signal cancellation. The main signal cancellation loop of the fabricated feedforward amplifier with the proposed signal cancellers cancel input signal more than 26.3 dB and the intermodulation distortion signal cancellation loop cancel more than 15.2 dB for 200 MHz bandwidth. And the proposed feedforward power amplifier improves C/I ratio by 20.8 dB with two tones at 2,115 MHz, 2,165 MHz, respectively.

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

Low-Voltage Tunable Pseudo-Differential Transconductor with High Linearity

  • Galan, Juan Antonio Gomez;Carrasco, Manuel Pedro;Pennisi, Melita;Martin, Antonio Lopez;Carvajal, Ramon Gonzalez;Ramirez-Angulo, Jaime
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.576-584
    • /
    • 2009
  • A novel tunable transconductor is presented. Input transistors operate in the triode region to achieve programmable voltage-to-current conversion. These transistors are kept in the triode region by a novel negative feedback loop which features simplicity, low voltage requirements, and high output resistance. A linearity analysis is carried out which demonstrates how the proposed transconductance tuning scheme leads to high linearity in a wide transconductance range. Measurement results for a 0.5 ${\mu}m$ CMOS implementation of the transconductor show a transconductance tuning range of more than a decade (15 ${\mu}A/V$ to 165 ${\mu}A/V$) and a total harmonic distortion of -67 dB at 1 MHz for an input of 1 Vpp and a supply voltage of 1.8 V.